Demos

Demo 1: Cellular Automata
A special kind of Turing Machine

Cellular Automata
Let’s talk about cellular automata, because they are a nice system to think about computation.

n--= CellularAutomaton[30, {{1}, 0}, 500] // ArrayPlot

Outf#]=

Here is the rule table for Rule 30:

n-;- RulePlot[CellularAutomaton[240]]

by, HEE EE H E N BN N m
E E E =

It means that for each cell, it looks at its own state (black or white) and the states of its two adjacent
neighbors, and depending on what all those states are, the cell either changes its color or not.

This is what the top three cells are, a center cell and its two neighbors. The cell underneath the three is
what will happen to the cell in the next time step for this “neighborhood” configuration.

Notice how the rule table gives the outcome for all possible neighborhood scenarios.

Question 1

By only looking at the rule table for a cellular automata, can you determine if the cellular
automata will produce something “interesting” or eventually reach a stopping point?

Answer 1

No :(This is the halting problem. To see what kind of patterns these rules make in a cellular automata,

Printed by Wolfram Mathematica Student Edition

2 | demo_cas.nb

you actually have to run them. Check it out, for the rule table above:

1= CellularAutomaton[240, {0, 1, 1,1, 0, 0, 1}, 10] // ArrayPlot

Out[«]=

Question 2

What about this rule table? Can you imagine what patterns this CA will produce just by looking at
the rule table?

n-= RulePlot[CellularAutomaton[0]]

oo, HENE EE N E N EN N]

Answer 2

Well, no matter what a cell and its neighbors look like, it will always make a white cell at the next time
step. So any input will give a bunch of white cells.

Printed by Wolfram Mathematica Student Edition

demo_cas.nb | 3

n-= CellularAutomaton[0, {1, O}, 10] // ArrayPlot

_

Out[#]=

Question 3

Wait, | thought we weren’t able to guess that because of the halting problem! Actually, we are able to
make some approximations. The halting problem is a bit more general than that. There’s no way to
write a program that will tell us when any cellular automata rule table will produce a pattern that will
stop or make something interesting forever.

However, with cellular automata, we already know the rule that created outputs, which is cool, but not
anything like real data we get from the real world. For example, what rules are creating Tweets? What
rule is driving diseases and cancer? Is there any way to know? Let’s think about it in cellular automata
land.

Here’s some data produced from a cellular automata. We don’t know the rule. On pen and paper, can
you try to reproduce the rule table based on what you see here? Remember that when you run
into the left or right edge, the boundary just wraps around (the CA lives on a cylinder and this
view how the cylinder is cut and laid flat).

Printed by Wolfram Mathematica Student Edition

4 | demo_cas.nb

Out[#]=

Answer 3

We see from the first to the second row:

{1,0,1}->0

{0,1,0}->1

{1,1,0}->0

The second to the third:

{0,0,1}->1

{0,1,0}->1

{1,0,0}->1

And the third to the fourth:

{1,1,1}->0

{1,1,1}->0

{1,1,1}->0

We need to see the outcomes for all 8 possible neighborhoods to be ABSOLUTELY sure of the rule that
made this output. This shows outcomes for neighborhoods:
{1,1,1}

{1,1,0}

{1,0,0}

{1,0,1}

Printed by Wolfram Mathematica Student Edition

demo_cas.nb | 5

{0,1,0}
{0,0,1}
We only have 6/8 so we cannot say for sure which rule made this.

Question 4: Bonus!

Is it possible to have a cellular automaton that continuously expresses all possible states over and over
again? Assume the size of the cellular automata is 3 cells wide, like shown in this example:
Hint: How many possible states are in a cellular automata of width 3? (223 =8)

n-1= Table[CellularAutomaton[i, {0, 1, 0}, 16] // ArrayPlot, {i, 0, 255}]

ol |

-

o

ey B e

e

ey b Ca e
Sl o ol i

|
|

Printed by Wolfram Mathematica Student Edition

-~

" " " " "n

-

e

e ey e

ey
SR

-~

" " s " "n "

e

-~

-~

ety

St

-~

"

" " " " "n

—

" e e

-~

—

S
SR

-~

" " " " "n

-~

" % s " " "

-~

JILT

TTTTTTTIT
TTTTTTTIT

SRy
Sty

ey

-~

" % " " " "

= LD
a4
Sty

"

-~

ity

-~

" % s " " "

-~

" " " " "n

-~

LITTNNN

St

-~

ol ool ol alal

Ty Ty ey

-~

g by, Ty Ty

-~

ol o ol ol

-~

e,
e,

-

-~

- I

1

R

-~

ol ool ol alal

ey

-~

b
b

-~

e,
e

-

PrLreLr
Pl

-~

"

Attty

-~

-

e,

"
"

-

ST
SR

e,
e,

-~

. |
.
el el ™

-

ol ™ ™

12 | demo_cas.nb

-

“
_
-
n
<
-

e

St g “ e

- -
S

" e e e

-

s -
St R

No, it is not possible. Think about the states of all 1’s and all 0’s. Once you reach these states, you

e

Answer 4

cannot go anywhere. So it is possible to reach all possible states only once, but never over and over
again. The states of all 1’s and 0’s are called absorbing states.

Printed by Wolfram Mathematica Student Edition

