
QUESTION 1: Circuits & Formulas

Prove that $y_1 = (x_1 \text{ AND } x_2)$ is equivalent to $(x_1 \lor \overline{y}_1) \land (x_2 \lor \overline{y}_1) \land (\overline{x}_1 \lor \overline{x}_2 \lor y_1)$ in the Boolean circuit shown below.

Complete the following statements about the three clauses. You may use either natural language or logical statements according to the notation used above.

- (a) Given than the three clauses are linked by logical AND statements, all three clauses must be ...
- (b) If x_1 is false, y_1 must be...
- (c) If x_2 is false, y_1 must be...
- (d) If x_1 is true and x_2 is true, y_1 must be...

NOTE on notation: V = logical OR; $\Lambda = logical AND$; $\overline{} = NOT$ (the statement is false)

QUESTION 2: Traveling Salesperson

A traveling salesperson needs to visit a series of cities connected by edges (roads). *D* is the distance of the **shortest** path through all of the vertices (cities) in the network. Which of these questions is in NP? Provide a brief explanation of your reasoning, eg. "It is easy to check if the solution is true by..."

Is D less than 10,000 miles?

Is D more than 8,000 miles?

Is D exactly 9,219 miles?

QUESTION 3: Complexity Hierarchy

Considering a cellular automata with a state s at time t_n , what is the complexity class that each of the following questions belongs to?

- What will the state be at t_{n+x} ?
- Does s have a predecessor?
- On a lattice of size *n*, is *s* on a periodic orbit?
- On a lattice of infinite size, will s ever die out?

Your answers should indicate whether each question is in P, NP, PSPACE, or undecidable.

The questions correspond to the <u>Circuits & Formulas</u> (QUESTION 1), <u>Traveling Salesperson</u> (QUESTION 2) and <u>Complexity Hierarchy</u> (QUESTION 3) Quizzes, where you can find more information.

Download the video quizzes <u>here</u>.