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This graduate-level course will examine modern 
techniques for analyzing and modeling the structure and 
dynamics of complex networks. The focus will be on 
statistical algorithms and methods, and both lectures 
and assignments will emphasize model interpretability 
and understanding the processes that generate real 
data. Applications will be drawn from computational 
biology and computational social science. No biological 
or social science training is required. (Note: this is not a 
scientific computing course, but there will be plenty of 
computing for science.)
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regulation, and spreading-process dynamics, examining 
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intuition for how network structure and dynamics 
relate to biological phenomena. 

Full lectures notes online (~150 pages in PDF)

https://aaronclauset.github.io/courses/5352/
http://www.apple.com
http://www.apple.com
https://aaronclauset.github.io/courses/5352/


100
150

200
250

300

Software

R
Python
Matlab
NetworkX [python]
igraph [python, R, c++]
graph-tool [python, c++]
GraphLab [python, c++]

Standalone editors


UCI-Net
NodeXL
Gephi
Pajek
Network Workbench
Cytoscape
yEd graph editor
Graphviz

Network data sets

Colorado Index of Complex Networks
icon.colorado.edu
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http://nodexl.codeplex.com
https://gephi.org
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http://nwb.cns.iu.edu
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1. defining a network
2. describing a network

3. null models and statistical inference for networks

three main types of descriptive statistics:
1. connectivity (degree, etc.)
2. geometric (paths, distances, etc.)
3. motifs (small subgraphs, triangles, etc.)
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describing networks
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network degrees

spreading processes on networks

network edges are the mechanism of transmission

biological (diseases)
• SIS and SIR models

social (information)
• SIS, SIR models
• threshold models
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network degrees

2004

• relationship 
network in 
“Jefferson High”

• this subgraph is 
52% of school

• who are most 
important disease 
spreaders?

http://www.soc.duke.edu/~jmoody77/chains.pdf


• amazon.com viral 
marketing

• viral trace for “Oh my 
Goddess!” community

• very high degrees!
• most attempts to 

“influence” fail

2007

network degrees

https://www.cs.cmu.edu/~jure/pubs/viral-tweb.pdf
https://www.cs.cmu.edu/~jure/pubs/viral-tweb.pdf
https://www.cs.cmu.edu/~jure/pubs/viral-tweb.pdf


cascade 
epidemic
branching process
spreading process

network degrees

R0 = net reproductive rate
= average degree

R0 = 0.923 . . . caveat:
ignores network structure, 
dynamics, etc.

hki
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“sub-critical”
small outbreaks

“super-critical”
global epidemics

“critical”
outbreaks of all sizes

R0 < 1 R0 > 1R0 = 1



network degrees

some numbers from Lauren Ancel Meyers (UT Austin)

all super-critical



bigger cascades
• smaller overlap among neighbors
• more expander-like               

[more like a random graph]
• higher transmission probability
• lower activation threshold

smaller cascades
• larger overlap among neighbors
• more triangles
• smaller "communities"
• more spatial-like organization
• lower transmission probability
• higher activation threshold

network degrees

Volz, J. Math. Bio. 56, 293–310 (2008)
Bansal et al., J. Royal Soc. Interface 4, 879–891 (2007)
Karrer and Newman, Phys. Rev. E 82, 016101 (2010)
Salathe and Jones, PLoS Comp. Bio. 6, e1000736 (2010)

https://arxiv.org/abs/physics/0508160
https://royalsocietypublishing.org/doi/abs/10.1098/rsif.2007.1100
https://arxiv.org/abs/1003.5673
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1000736


how could we halt the spread?
• break network into disconnected pieces

network degrees



two networks

network degrees
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free

ba

Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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important consequence of nonlinear gravitational processes if the
initial conditions are gaussian, and is a potentially powerful signa-
ture to exploit in statistical tests of this class of models; see Fig. 1.

The information needed to fully specify a non-gaussian field (or,
in a wider context, the information needed to define an image8)
resides in the complete set of Fourier phases. Unfortunately,
relatively little is known about the behaviour of Fourier phases in
the nonlinear regime of gravitational clustering9–14, but it is essential
to understand phase correlations in order to design efficient
statistical tools for the analysis of clustering data. A first step on
the road to a useful quantitative description of phase information is
to represent it visually. We do this using colour, as shown in Fig. 2.
To view the phase coupling in an N-body simulation, we Fourier-
transform the density field; this produces a complex array contain-
ing the real (R) and imaginary (I) parts of the transformed ‘image’,
with the pixels in this array labelled by wavenumber k rather than
position x. The phase for each wavenumber, given by
f ¼ arctanðI=RÞ, is then represented as a hue for that pixel.

The rich pattern of phase information revealed by this method
(see Fig. 3) can be quantified, and related to the gravitational
dynamics of its origin. For example, in our analysis of phase
coupling5 we introduced a quantity Dk:

Dk ! fkþ1 ! fk ð4Þ

This quantity measures the difference in phase of modes with
neighbouring wavenumbers in one dimension. We refer to Dk as
the phase gradient. To apply this idea to a two-dimensional
simulation, we simply calculate gradients in the x and y directions
independently. Because the difference between two circular random
variables is itself a circular random variable, the distribution of Dk

should initially be uniform. As the fluctuations evolve waves begin
to collapse, spawning higher-frequency modes in phase with the
original15. These then interact with other waves to produce the non-
uniform distribution of Dk seen in Fig. 3.

It is necessary to develop quantitative measures of phase infor-
mation that can describe the structure displayed in the colour
representations. In the beginning, the phases fk are random and
so are the Dk obtained from them. This corresponds to a state of
minimal information, or in other words, maximum entropy. As
information flows into the phases, the information content must
increase and the entropy decrease. This can be quantified by
defining an information entropy for the set of phase gradients5.
We construct a frequency distribution, f(D), of the values of Dk

obtained from the whole map. The entropy is then defined as

SðDÞ ¼ ! !f ðDÞ log½f ðDÞÿdD ð5Þ

where the integral is taken over all values of D, that is, from 0 to 2p.
The use of D, rather than f itself, to define entropy is one way of
accounting for the lack of translation invariance of f, a problem that
was missed in previous attempts to quantify phase entropy16. A
uniform distribution of D is a state of maximum entropy (mini-
mum information), corresponding to gaussian initial conditions
(random phases). This maximal value of Smax ¼ logð2pÞ is a
characteristic of gaussian fields. As the system evolves, it moves
into states of greater information content (that is, lower entropy).
The scaling of S with clustering growth displays interesting
properties5, establishing an important link between the spatial
pattern and the physical processes driving clustering growth. This
phase information is a unique ‘fingerprint’ of gravitational instabil-
ity, and it therefore also furnishes statistical tests of the presence of
any initial non-gaussianity17–19. !
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Error and attack tolerance
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Many complex systems display a surprising degree of tolerance
against errors. For example, relatively simple organisms grow,
persist and reproduce despite drastic pharmaceutical or
environmental interventions, an error tolerance attributed to
the robustness of the underlying metabolic network1. Complex
communication networks2 display a surprising degree of robust-
ness: although key components regularly malfunction, local fail-
ures rarely lead to the loss of the global information-carrying
ability of the network. The stability of these and other complex
systems is often attributed to the redundant wiring of the func-
tional web defined by the systems’ components. Here we demon-
strate that error tolerance is not shared by all redundant systems:
it is displayed only by a class of inhomogeneously wired networks,
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals

Exponential Scale-free
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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Figure 2 Changes in the diameter d of the network as a function of the fraction f of the
removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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called scale-free networks, which include the World-Wide Web3–5,
the Internet6, social networks7 and cells8. We find that such
networks display an unexpected degree of robustness, the ability
of their nodes to communicate being unaffected even by un-
realistically high failure rates. However, error tolerance comes at a
high price in that these networks are extremely vulnerable to
attacks (that is, to the selection and removal of a few nodes that
play a vital role in maintaining the network’s connectivity). Such
error tolerance and attack vulnerability are generic properties of
communication networks.

The increasing availability of topological data on large networks,
aided by the computerization of data acquisition, had led to great
advances in our understanding of the generic aspects of network
structure and development9–16. The existing empirical and theo-
retical results indicate that complex networks can be divided into
two major classes based on their connectivity distribution P(k),
giving the probability that a node in the network is connected to k
other nodes. The first class of networks is characterized by a P(k)
that peaks at an average 〈k〉 and decays exponentially for large k. The
most investigated examples of such exponential networks are the
random graph model of Erdös and Rényi9,10 and the small-world
model of Watts and Strogatz11, both leading to a fairly homogeneous
network, in which each node has approximately the same number
of links, k ! 〈k〉. In contrast, results on the World-Wide Web
(WWW)3–5, the Internet6 and other large networks17–19 indicate
that many systems belong to a class of inhomogeneous networks,
called scale-free networks, for which P(k) decays as a power-law,
that is PðkÞ"k! g, free of a characteristic scale. Whereas the prob-
ability that a node has a very large number of connections (k q 〈k〉)
is practically prohibited in exponential networks, highly connected
nodes are statistically significant in scale-free networks (Fig. 1).

We start by investigating the robustness of the two basic con-
nectivity distribution models, the Erdös–Rényi (ER) model9,10 that
produces a network with an exponential tail, and the scale-free
model17 with a power-law tail. In the ER model we first define the N
nodes, and then connect each pair of nodes with probability p. This
algorithm generates a homogeneous network (Fig. 1), whose con-
nectivity follows a Poisson distribution peaked at 〈k〉 and decaying
exponentially for k q 〈k〉.

The inhomogeneous connectivity distribution of many real net-
works is reproduced by the scale-free model17,18 that incorporates
two ingredients common to real networks: growth and preferential
attachment. The model starts with m0 nodes. At every time step t a
new node is introduced, which is connected to m of the already-
existing nodes. The probability Πi that the new node is connected
to node i depends on the connectivity ki of node i such that
Πi ¼ ki=Sjkj. For large t the connectivity distribution is a power-
law following PðkÞ ¼ 2m2=k3.

The interconnectedness of a network is described by its diameter
d, defined as the average length of the shortest paths between any
two nodes in the network. The diameter characterizes the ability of
two nodes to communicate with each other: the smaller d is, the
shorter is the expected path between them. Networks with a very
large number of nodes can have quite a small diameter; for example,
the diameter of the WWW, with over 800 million nodes20, is around
19 (ref. 3), whereas social networks with over six billion individuals
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Figure 1 Visual illustration of the difference between an exponential and a scale-free
network. a, The exponential network is homogeneous: most nodes have approximately
the same number of links. b, The scale-free network is inhomogeneous: the majority of
the nodes have one or two links but a few nodes have a large number of links,
guaranteeing that the system is fully connected. Red, the five nodes with the highest
number of links; green, their first neighbours. Although in the exponential network only
27% of the nodes are reached by the five most connected nodes, in the scale-free
network more than 60% are reached, demonstrating the importance of the connected
nodes in the scale-free network Both networks contain 130 nodes and 215 links
(〈k 〉 ¼ 3:3). The network visualization was done using the Pajek program for large
network analysis: 〈http://vlado.fmf.uni-lj.si/pub/networks/pajek/pajekman.htm〉.
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removed nodes. a, Comparison between the exponential (E) and scale-free (SF) network
models, each containing N ¼ 10;000 nodes and 20,000 links (that is, 〈k 〉 ¼ 4). The blue
symbols correspond to the diameter of the exponential (triangles) and the scale-free
(squares) networks when a fraction f of the nodes are removed randomly (error tolerance).
Red symbols show the response of the exponential (diamonds) and the scale-free (circles)
networks to attacks, when the most connected nodes are removed. We determined the f
dependence of the diameter for different system sizes (N ¼ 1;000; 5,000; 20,000) and
found that the obtained curves, apart from a logarithmic size correction, overlap with
those shown in a, indicating that the results are independent of the size of the system. We
note that the diameter of the unperturbed (f ¼ 0) scale-free network is smaller than that
of the exponential network, indicating that scale-free networks use the links available to
them more efficiently, generating a more interconnected web. b, The changes in the
diameter of the Internet under random failures (squares) or attacks (circles). We used the
topological map of the Internet, containing 6,209 nodes and 12,200 links (〈k 〉 ¼ 3:4),
collected by the National Laboratory for Applied Network Research 〈http://moat.nlanr.net/
Routing/rawdata/〉. c, Error (squares) and attack (circles) survivability of the World-Wide
Web, measured on a sample containing 325,729 nodes and 1,498,353 links3, such that
〈k 〉 ¼ 4:59.
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network degrees

patient 0

strategy: delete vertices
3. build “fire breaks”

vaccinated = deleted
(“fire break”)

software packages for simulating epidemics on networks
1. Epidemics on Networks (EoN) https://epidemicsonnetworks.readthedocs.io/en/latest/ 
2. SEIR+ Model https://github.com/ryansmcgee/seirsplus

https://epidemicsonnetworks.readthedocs.io/en/latest/
https://github.com/ryansmcgee/seirsplus


network degrees

patient 0

effective buffer

•vaccination strategies
• the “front line” (hospitals)
• high degree nodes
• the vulnerable (old/young)

software packages for simulating epidemics on networks
1. Epidemics on Networks (EoN) https://epidemicsonnetworks.readthedocs.io/en/latest/ 
2. SEIR+ Model https://github.com/ryansmcgee/seirsplus

https://epidemicsonnetworks.readthedocs.io/en/latest/
https://github.com/ryansmcgee/seirsplus
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but, in social networks…
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2007

broadcast influence

• classic information marketing
• message saturation
• degree is most important

Watts & Dodds, Journal of Consumer Research 34 (2007)

https://www.uvm.edu/pdodds/research/papers/others/2007/watts2007a.pdf
https://www.jstor.org/stable/10.1086/518527


network degrees

2007

network influence

• “network” (decentralized) marketing

• high-degree = “opinion leader”

• high-degree alone = irrelevant

• a cascade requires a legion of 
susceptibles (a system-level property)

Watts & Dodds, Journal of Consumer Research 34 (2007)

https://www.uvm.edu/pdodds/research/papers/others/2007/watts2007a.pdf
https://www.jstor.org/stable/10.1086/518527


(1854-1900)

network degrees

“The only thing worse than being 
talked about is not being talked about.”

• "influence" not really about the influencer
• as much about the susceptibles



network degrees

how to start a social movement?



network degrees

http://sivers.org/ff

© 2010, Derek Sivers

how to start a social movement?

http://sivers.org/ff


network degrees

2015

viral diffusionbroadcast

Goel, et al. Management Science 62 (2015)

• 1 billion diffusion events, 
on twitter

• virality measure for each 
cascade

• cascade sizes are 
extremely high variance 
(maybe power law…)

https://5harad.com/papers/twiral.pdf


network degrees

Goel, et al. Management Science 62 (2015)

• enormous diversity of cascade shapes, depths

https://5harad.com/papers/twiral.pdf


network degrees

degrees:

• first-order description of network structure
• direct implications for spreading processes
• cascades require both susceptible 

population and spreaders

open questions:

• impact of degrees on other dynamics
• feedback from dynamics to degree    

[adaptive behaviors like self-quarantine, evangelism]

• when does degree not matter?
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describing networks

position



position = centrality: 
structural vs. dynamical 
importance

describing networks

ge
om

et
ri

c
co

nn
ec

tiv
ity

   Boldi & Vigna, arxiv:1308.2140 (2013)
   Borgatti, Social Networks 27, 55–71 (2005)

harmonic centrality
closeness centrality
betweenness centrality
degree centrality
eigenvector centrality
PageRank
Katz centrality
many many more…
structural importance = cheap 
estimate of dynamical importance 
(aka "influence")

https://arxiv.org/abs/1308.2140
http://www.analytictech.com/borgatti/papers/centflow.pdf


position = centrality: 
structural vs. dynamical 
importance

centrality = unsupervised 
node ranking

describing networks

f : G → ⃗v



position = centrality: 
harmonic, closeness 
centrality

importance = being in 
“center” of the network

describing networks

ci =
1

n� 1

X

j 6=i

1

dij

dij =

⇢
`ij if j reachable from i
1 otherwise

distance:

length of shortest path

harmonic

   Boldi & Vigna, arxiv:1308.2140 (2013)
   Borgatti, Social Networks 27, 55–71 (2005)

https://arxiv.org/abs/1308.2140
http://www.analytictech.com/borgatti/papers/centflow.pdf


position = centrality: 
PageRank, Katz, eigenvector 
centrality

importance = sum of 
importances of nodes that 
point at you

or, the right eigenvector of

describing networks

Ii =
X

j!i

Ij
kj

*

*modulo several technical details

Ax = �x

   Boldi & Vigna, arxiv:1308.2140 (2013)
   Borgatti, Social Networks 27, 55–71 (2005)

https://arxiv.org/abs/1308.2140
http://www.analytictech.com/borgatti/papers/centflow.pdf


network position

Giovanni de Medici

an example



network position

Giovanni de MediciPalazzo MediciDuomo

1993

http://www.stats.ox.ac.uk/~snijders/PadgettAnsell1993.pdf


Pazzi

Salviati

Medici

Acciaiuoli

Albizzi

Ginori

Tornabuoni

Guadagni

Lamberteschi

Barbadori

Ridolfi
Castellani

Strozzi

Peruzzi
Bischeri

nodes: Florence families
edges: inter-family marriages

which family is 
most central?

network position: harmonic



Pazzi

Salviati

Medici

Acciaiuoli

Albizzi

Ginori

Tornabuoni

Guadagni

Lamberteschi

Barbadori

Ridolfi
Castellani

Strozzi

Peruzzi
Bischeri

network position: closeness

nodes: Florence families
edges: inter-family marriages

Medici?



Pazzi

Salviati

Medici

Acciaiuoli

Albizzi

Ginori

Tornabuoni

Guadagni

Lamberteschi

Barbadori

Ridolfi
Castellani

Strozzi

Peruzzi
Bischeri

network position: closeness

nodes: Florence families
edges: inter-family marriages

Medici.

CMedici = 6

✓
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◆
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◆
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3

◆

= 9.5



network position: harmonic

Medici 9.5
Guadagni 7.92

Albizzi 7.83
Strozzi 7.67
Ridolf 7.25

Bischeri 7.2
Tornabuoni 7.17

Barbadori 7.08
Peruzzi 6.87

Castellani 6.87
Salviati 6.58

Acciaiuoli 5.92
Ginori 5.33

Lamberteschi 5.28
Pazzi 4.77
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network position

actually, it’s complicated...



network position

most
centralized

most
decentralized

vast wilderness 
of in-between



network position

vast wilderness 
of in-between

most
centralized

most
decentralized



network position

vast wilderness 
of in-between

most
centralized

most
decentralized



network position

positions:

• geometric description of network structure
• core vs. periphery
• centrality = importance, influence
• nearly all centrality scores highly correlated

open questions:

• position and dynamics
• what does position predict?
• when does position not matter?

2

FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which
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community structure
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community structure

community structure:                 
a group of vertices that 
connect to other groups  in 
similar ways

“bridge”
edges

“internal”
edges

assortative community structure
(edges inside the groups)
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community structure

community structure:                 
a group of vertices that 
connect to other groups  in 
similar ways
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assortative
edges within groups

disassortative
edges between groups

ordered
linear group hierarchy

core-periphery
dense core, sparse periphery

community structure



• enormous interest, especially since 2000

• dozens of algorithms for extracting 
various large-scale patterns

• hundreds of papers published

• spanning Physics, Computer Science, 
Statistics, Biology, Sociology, and more

• this was one of the first:

PNAS 2002

12,421+ citations on Google Scholar

assortative disassortative

ordered core-periphery

community structure

https://www.ncbi.nlm.nih.gov/pubmed/12060727
https://www.ncbi.nlm.nih.gov/pubmed/12060727


network communities

1983

most new job opportunities from 
“weak ties”
• within-community links = strong
• bridge links = weak

https://www.jstor.org/stable/2776392


network communities

1983

most new job opportunities from 
“weak ties”
• within-community links = strong
• bridge links = weak

why?
information propagates quickly   
within a community,
but slowly between communities

https://www.jstor.org/stable/2776392


network communities

amazon.com
co-purchasing network

2004

https://arxiv.org/abs/cond-mat/0408187


network communities

amazon.com
co-purchasing network
find partition that maximizes 
modularity     on those groups

2004

m = 2,464,630 edges
n = 409,687 items

Q
<latexit sha1_base64="TIwmk8u21VOUoY7U7p41qYBa1Ac=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZrNfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8frGuM2Q==</latexit>

https://arxiv.org/abs/cond-mat/0408187


network communities

clustered
network

purchases = interests
interests = clustered



network communities

political books         
on amazon (2004)

©2004   Valdis Krebs



• community = vertices with same pattern of  
inter-community connections

• network macro-structure
• finding them like “network clustering”

[there is no best algorithm, and there is No Free Lunch]

• allow us to coarse grain system structure  
[decompose heterogeneous structure into homogeneous blocks]

• constrains network synchronization, 
information flows, diffusion, influence

network communities



• community = vertices with same pattern of  
inter-community connections

• network macro-structure
• finding them like “network clustering”

[there is no best algorithm, and there is No Free Lunch]

• allow us to coarse grain system structure  
[decompose heterogeneous structure into homogeneous blocks]

• constrains network synchronization, 
information flows, diffusion, influence

open questions:

• what processes generate communities?
• what impact on dynamics? network function?

network communities



describing networks

aka, summarizing a network’s structure
f : G ! {x1, . . . , xk}

summary statistics

}
<latexit sha1_base64="z9I03uDaA3bS8qEriCB/zLQ+3nM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh960X664VXcOskq8nFQgR6Nf/uoNYpZGXCGT1Jiu5yboZ1SjYJJPS73U8ISyMR3yrqWKRtz42fzSKTmzyoCEsbalkMzV3xMZjYyZRIHtjCiOzLI3E//zuimG134mVJIiV2yxKEwlwZjM3iYDoTlDObGEMi3srYSNqKYMbTglG4K3/PIqadWq3kW1dn9Zqd/kcRThBE7hHDy4gjrcQQOawCCEZ3iFN2fsvDjvzseiteDkM8fwB87nD5/ajWs=</latexit>



describing networks

nodes meso whole network
degree group degree size (num. nodes)
centrality (various) group size mean degree
reciprocity (local) modularity mean geodesic dist.
clustering coeff. (local) mixing matrix diameter
eccentricity hierarchy assortativity (degree)
… motif counts modularity

… reciprocity (global)
clustering coeff. (global)
…

at the level of

aka, summarizing a network’s structure



describing networks

aka, summarizing a network’s structure

• just counting things : 
• an infinite number of things you could count — which ones 

are meaningful to count?
• warning : nearly all summary statistics correlate with degree

• things to ponder : what is a node? what is an edge?
• how do nodes interact?
• what causes connections to change over time?
• where is the structure : nodes? communities? network?
• what is the role of node degree on dynamics?
• what is role of node position on dynamics?

f : G ! {x1, . . . , xk}
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end of lecture 2

lecture 3 : null models & inference for networks

http://santafe.edu/~aaronc/slides/Clauset_2019_CSSS_Networks_3.pdf


network position

an example

how does a network become centralized?
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which

optimizing paths for Boston commuter rail

data

  Gastner & Newman, J. Stat. Mech. P01015 (2006)

559 km of rail
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which

data minimum travel time

  Gastner & Newman, J. Stat. Mech. P01015 (2006)

559 km of rail 3272 km of rail

an example

optimizing paths for Boston commuter rail
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which

data minimum travel time

  Gastner & Newman, J. Stat. Mech. P01015 (2006)

minimum weight tree

559 km of rail 3272 km of rail 499 km of rail

an example

optimizing paths for Boston commuter rail
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which

  Gastner & Newman, J. Stat. Mech. P01015 (2006)

route factor

mean ratio of distance along 
edges       to direct Euclidean 
distance       to root

q =
1

n

nX

i=1
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which

  Gastner & Newman, J. Stat. Mech. P01015 (2006)

a simple model
embed     vertices in a plane
until all vertices connected

add edge          with 
minimum value for

559 km 3272 km 499 km

q=1q=1.14 q=1.61

wij = dij + �`j0

n

(i, j)

distance from   to
parameter

route length to rooti j

� = 0 minimum spanning tree
� > 0 prefer shorter paths to root

*this is exactly Prim’s algorithm for MSTs

*
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which
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FIG. 3: Route factor q and average edge length l̄ as a function
of β for our second model (n = 10 000). Inset: an example
model network with β = 0.4.

work. Values of q in the range 1.1 to 1.6 observed in the
real-world networks are easily achieved.

When we look at the shape of the network itself how-
ever (see figure inset), we get quite a different story. This
model produces a symmetric network that fills space out
to some approximately constant radius from the root,
not unlike the clusters produced by the well-known Eden
growth model [15]. The second term in Eq. (3) makes
it economically disadvantageous to build connections to
outlying areas before closer areas have been connected.
Thus all vertices within a given distance of the root are
served by the network, without gaps, which is a more
realistic situation than the dendritic network of Fig. 2.

And this in fact may be the secret of how low route
factors are achieved in reality. Our second model—unlike
our first—does not explicitly aim to optimize the route
factor. But it does a creditable job nonetheless, precisely
because it fills space radially. The main trunk lines in the
network are forced to be approximately straight simply
because the space to either side of them has already been
filled and there’s nowhere else to go but outwards.

Readers familiar with urban geography may argue that
real networks, and the towns they serve, are dendritic in
form. And this is true, but it is primarily a consequence
of other factors, such as ribbon development along high-
ways. In other words, the initial distribution of vertices
in real networks is usually non-uniform, unlike our model.
It is interesting to see therefore what happens if we apply
our model to a realistic scatter of points, and in Fig. 1d
we have done this for the stations of the Boston rail sys-
tem. The figure shows the network generated by our
second model for β = 0.4 given the real-world positions
of the stations. The result is, with only a couple of ex-
ceptions, identical to the true rail network, with a com-

parable route factor of 1.11 and total edge length 511km.
To summarize, we have in this paper studied spatial

distribution or collection networks such as pipelines and
sewers, focusing particularly on their cost in terms of
total edge length and their efficiency in terms of the net-
work distance between vertices, as measured by the so-
called route factor. While these two quantities are, to
some extent, at odds with one another, the first being
decreased only at the expense of an increase in the sec-
ond, our empirical observations indicate that real-world
networks find good compromise solutions giving nearly
optimal values of both. We have presented two models of
spatial networks based on greedy optimization strategies
that reproduce this behavior well, showing how networks
possessing simultaneously good route factors and low to-
tal edge length can be generated by plausible growth
mechanisms.

The results presented represent only a fraction of the
possibilities in this area. Numerous other networks fall
into the class studied here, including various utility,
transportation, or shipping networks, as well as some bi-
ological networks, such as the circulatory system, fungal
mycels, and others, and we hope that researchers will feel
encouraged to investigate these interesting systems.
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FIG. 1: (a) Commuter rail network in the Boston area. The arrow marks the assumed root of the network. (b) Star graph.
(c) Minimum spanning tree. (d) The model of Eq. (3) applied to the same set of stations.

of the networks to two theoretical models that are each
optimal by one of these two criteria. If one is interested
solely in short, efficient paths to the root vertex then the
optimal network is the “star graph,” in which every ver-
tex is connected directly to the root by a single straight
edge (see Fig. 1b). Conversely, if one is interested solely
in minimizing total edge length, then the optimal net-
work is the minimum spanning tree (MST) (see Fig. 1c).
(Given a set of n vertices at specified points on a flat
plane, the MST is the set of n − 1 edges joining them
such that all vertices belong to a single component and
the sum of the lengths of the edges is minimized [17].)

To make the comparison with the star graph, we con-
sider the distance from each non-root vertex to the root
first along the edges of the network and second along a
simple Euclidean straight line, and calculate the mean
ratio of these two distances over all such vertices. Fol-
lowing Ref. [10], we refer to this quantity as the network’s
route factor, and denote it q:

q =
1

n

n∑

i=1

li0

di0

, (1)

where li0 is the distance along the edges of the network
from vertex i to the root (which has label 0), and di0

is the direct Euclidean distance. If there is more than
one path through the network to the root, we take the
shortest one. Thus, for example, q = 2 would imply that
on average the shortest path from a vertex to the root
through the network is twice as long as a direct straight-
line connection. The smallest possible value of the route
factor is 1, which is achieved by the star graph.

The route factors for our four networks are shown in
Table I. As we can see, the networks are remarkably
efficient in this sense, with route factors quite close to 1.
Values range from q = 1.13 for the Western Australian
gas pipelines to q = 1.59 for the sewer system.

We also show in Table I the total edge lengths for each
of our networks, along with the edge lengths for the MST
on the same set of vertices and, as the table shows, we
again find that our real-world networks are competitive

route factor edge length (km)
network n actual MST actual MST star
sewer system 23 922 1.59 2.93 498 421 102 998
gas (WA) 226 1.13 1.82 5 578 4 374 245 034
gas (IL) 490 1.48 2.42 6 547 4 009 59 595
rail 126 1.14 1.61 559 499 3 272

TABLE I: Number of vertices n, route factor q, and total edge
length for each of the networks described in the text, along
with the equivalent results for the star graphs and minimum
spanning trees on the same vertices. (Note that the route
factor for the star graph is always 1 and so has been omitted
from the table.)

with the optimal model, the combined edge lengths of
the real networks ranging from 1.12 to 1.63 times those
of the corresponding MSTs.

But now consider the remaining two columns in the
table, which give the route factors for the MSTs and the
total edge lengths for the star graphs. As the table shows,
these figures are for all networks much poorer than the
optimal case and, more importantly, much poorer than
the real-world networks too. Thus, although the MST
is optimal in terms of total edge length it is very poor
in terms of route factor and the reverse is true for the
star graph. Neither of these model networks would be a
good general solution to the problem of building an ef-
ficient and economical distribution network. Real-world
networks, on the other hand, appear to find a remarkably
good compromise between the two extremes, possessing
simultaneously the benefits of both the star graph and
the minimum spanning tree, without any of the flaws. In
the remainder of the paper we consider mechanisms by
which this might occur.

The networks we are dealing with are not, by and large,
designed from the outset for global optimality (or near-
optimality) of either their total edge length or their route
factors. Instead, they form by growing outward from the
root, as the population they serve swells and infrastruc-
ture is extended and improved. To explore the possi-
bilities of this process we consider a situation in which
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FIG. 1: Top: scatter plot of the ages of 1141 married couples
at time of marriage, from the 1995 US National Survey of
Family Growth [37]. Bottom: a histogram of the age differ-
ences (male minus female) for the same data.

In Fig. 1 (top panel) we show a scatter plot of the ages
of marriage partners in the 1995 US National Survey of
Family Growth [37]. As is clear from the figure, there is
a strong positive correlation between the ages, with most
of the density in the distribution lying along a rough
diagonal in the plot; people, it appears, prefer to marry
others of about the same age, although there is some
bias towards husbands being older than their wives. In
the bottom panel of the same figure we show a histogram
of the age differences in the study, which emphasizes the
same conclusion [76].

By analogy with the developments of Section II, we can
define a quantity exy, which is the fraction of all edges
in the network that join together vertices with values x
and y for the age or other scalar variable of interest. The
values x and y might be either discrete in nature (e.g., in-
tegers, such as age to the nearest year) or continuous (ex-
act age), making exy either a matrix or a function of two
continuous variables. Here, for simplicity, we concentrate
on the discrete case, but generalization to the continuous
case is straightforward.

As before, we can use the matrix exy to define a mea-
sure of assortativity. We first note that exy satisfies the
sum rules
∑

xy

exy = 1,
∑

y

exy = ax,
∑

x

exy = by, (20)

where ax and by are, respectively, the fraction of edges
that start and end at vertices with values x and y. (On an
undirected, unipartite graph, ax = bx.) Then, if there is
no assortative mixing exy = axby. If there is assortative
mixing one can measure it by calculating the standard
Pearson correlation coefficient thus:

r =

∑

xy xy(exy − axby)

σaσb
, (21)

where σa and σb are the standard deviations of the dis-
tributions ax and by. The value of r lies in the range
−1 ≤ r ≤ 1, with r = 1 indicating perfect assortativity
and r = −1 indicating perfect disassortativity (i.e., per-
fect negative correlation between x and y). For the age
data from Fig. 1, for example, we find that r = 0.574,
indicating strong assortative mixing once more.

One can construct in a straightforward manner a ran-
dom graph model of a network with this type of mixing
exactly analogous to the model presented in Section II B.
It is also possible to generate random representative net-
works from the ensemble defined by exy using the algo-
rithm described in Section II C. In this paper however,
rather than working further on the general type of mixing
described here, we will concentrate on one special exam-
ple of assortative mixing by a scalar property which is
particularly important for many of the networks we are
interested in, namely mixing by vertex degree.

A. Mixing by vertex degree

In general, scalar assortative mixing of the type de-
scribed above requires that the vertices of the network of
interest have suitable scalar properties attached to them,
such as age or income in social networks. In many cases,
however, data are not available for these properties to
allow us to assess whether the network is assortatively
mixed. But there is one scalar vertex property that is
always available for every network, and that is vertex
degree. So long as we know the network structure we
always know the degree of a vertex, and then we can
ask whether vertices of high degree preferentially asso-
ciate with other vertices of high degree. Do the gregari-
ous people hang out with other gregarious people? This
has been a topic of considerable discussion in the physics
literature [38, 39, 40, 41, 42]. As we will show, many
real-world networks do show significant assortative (or
disassortative) mixing by vertex degree.

Assortative mixing by degree can be quantified in ex-
actly the same way as for other scalar properties of ver-
tices, using Eq. (21). Taking the example of an undi-
rected network and using the notation of Ref. 22, we

(top) scatter plot of ages of 1141 
married couples at time of marriage 
[1995 US National Survey of Family 
Growth]

(bottom) histogram of age differences 
(M-F) for same data

r = 0.574
strongly assortative



ki
kj

assortative mixing

homophily and 
assortative mixing
like links with like

degree:
just another scalar

Newman, Phys. Rev. E 67, 026126 (2003).
* the assortativity coefficient formula simplifies somewhat 
in this case. see the Ref in the left corner for more details

*



assortative mixing

Newman, Phys. Rev. E 67, 026126 (2003).

7

network type size n assortativity r error σr ref.

social































physics coauthorship undirected 52 909 0.363 0.002 a
biology coauthorship undirected 1 520 251 0.127 0.0004 a
mathematics coauthorship undirected 253 339 0.120 0.002 b
film actor collaborations undirected 449 913 0.208 0.0002 c
company directors undirected 7 673 0.276 0.004 d
student relationships undirected 573 −0.029 0.037 e
email address books directed 16 881 0.092 0.004 f

technological











power grid undirected 4 941 −0.003 0.013 g
Internet undirected 10 697 −0.189 0.002 h
World-Wide Web directed 269 504 −0.067 0.0002 i
software dependencies directed 3 162 −0.016 0.020 j

biological















protein interactions undirected 2 115 −0.156 0.010 k
metabolic network undirected 765 −0.240 0.007 l
neural network directed 307 −0.226 0.016 m
marine food web directed 134 −0.263 0.037 n
freshwater food web directed 92 −0.326 0.031 o

TABLE II: Size n, degree assortativity coefficient r, and expected error σr on the assortativity, for a number of social,
technological, and biological networks, both directed and undirected. Social networks: coauthorship networks of (a) physicists
and biologists [43] and (b) mathematicians [44], in which authors are connected if they have coauthored one or more articles
in learned journals; (c) collaborations of film actors in which actors are connected if they have appeared together in one or
more movies [5, 7]; (d) directors of Fortune 1000 companies for 1999, in which two directors are connected if they sit on the
board of directors of the same company [45]; (e) romantic (not necessarily sexual) relationships between students at a US high
school [46]; (f) network of email address books of computer users on a large computer system, in which an edge from user A
to user B indicates that B appears in A’s address book [47]. Technological networks: (g) network of high voltage transmission
lines in the Western States Power Grid of the United States [5]; (h) network of direct peering relationships between autonomous
systems on the Internet, April 2001 [48]; (i) network of hyperlinks between pages in the World-Wide Web domain nd.edu, circa
1999 [49]; (j) network of dependencies between software packages in the GNU/Linux operating system, in which an edge from
package A to package B indicates that A relies on components of B for its operation. Biological networks: (k) protein–protein
interaction network in the yeast S. Cerevisiae [50]; (l) metabolic network of the bacterium E. Coli [51]; (m) neural network of
the nematode worm C. Elegans [5, 52]; tropic interactions between species in the food webs of (n) Ythan Estuary, Scotland [53]
and (o) Little Rock Lake, Wisconsin [54].

B. Models of assortative mixing by degree

In Ref. 22 we studied the ensemble of graphs that have
a specified value of the matrix ejk and solved exactly for
its average properties using generating function methods
similar to those of Section II B. We showed that the phase
transition at which a giant component first appears in
such networks occurs at a point given by det(I−m) = 0,
where m is the matrix with elements mjk = kejk/qj . One
can also calculate exactly the size of the giant component,
and the distribution of sizes of the small components be-
low the phase transition. While these developments are
mathematically elegant, however, their usefulness is lim-
ited by the fact that the generating functions involved
are rarely calculable in closed form for arbitrary speci-
fied ejk, and the determinant of the matrix I−m almost
never is. In this paper, therefore, we take an alternative
approach, making use of computer simulation.

We would like to generate on a computer a random
network having, for instance, a particular value of the
matrix ejk. (This also fixes the degree distribution, via
Eq. (23).) In Ref. 22 we discussed one possible way of
doing this using an algorithm similar that of Section II C.
One would draw edges from the desired distribution ejk

and then join the degree k ends randomly in groups of k
to create the network. (This algorithm has also been

discussed recently by Dorogovtsev et al. [40].) As we
pointed out, however, this algorithm is flawed because
in order to create a network without any dangling edges
the number of degree k ends must be a multiple of k for
all k. It is very unlikely that these constraints will be
satisfied by chance, and there does not appear to be any
simple way of arranging for them to be satisfied without
introducing bias into the ensemble of graphs. Instead,
therefore, we use a Monte Carlo sampling scheme which is
essentially equivalent to the Metropolis–Hastings method
widely used in the mathematical and social sciences for
generating model networks [55, 56]. The algorithm is as
follows.

1. Given the desired edge distribution ejk, we first
calculate the corresponding distribution of excess
degrees qk from Eq. (23), and then invert Eq. (22)
to find the degree distribution:

pk =
qk−1/k
∑

j qj−1/j
. (27)

Note that this equation cannot tell us how many
vertices there are of degree zero in the network.
This information is not contained in the edge dis-
tribution ejk since no edges connect to degree-zero
vertices, and so must be specified separately. On

degree

ki
kj
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moderately assortative

4388 Computer Science faculty
vertices are PhD granting institutions in North America
edge            means PhD at    and now faculty at
labels are US census regions + Canada

(u, v) u v

Northeast
Midwest
South
West
Canada

Clauset, Arbesman, Larremore, Science Advances 1, e1400005 (2015).

Northeast Midwest South West Canada au
Northeast 0.237 0.084 0.098 0.104 0.028 0.552
Midwest 0.084 0.134 0.088 0.059 0.016 0.381

South 0.098 0.088 0.166 0.068 0.012 0.432
West 0.104 0.059 0.068 0.145 0.017 0.393

Canada 0.028 0.016 0.012 0.017 0.170 0.242
au 0.552 0.381 0.432 0.393 0.242
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suggest underlying 
mechanism on that variable

Newman, Phys. Rev. E 67, 026126 (2003).

r  0

r ⇡ {�1, 1}
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describing networks

motifs:                               
small subgraphs (of interest), 
which we then count
compare counts against null 
model (random graph model)

Cl concentrations in the Sajama ice core, and to
a number of other pedological and geomorpho-
logical features indicative of long-term dry cli-
mates (8, 11–14, 18). This decline in human
activity around the Altiplano paleolakes is seen
in most caves, with early and late occupations
separated by largely sterile mid-Holocene sed-
iments. However, a few sites, including the
caves of Tulan-67 and Tulan-68, show that
people did not completely disappear from the
area. All of the sites of sporadic occupation
are located near wetlands in valleys, near
large springs, or where lakes turned into wet-
lands and subsistence resources were locally
still available despite a generally arid climate
(7, 8, 19, 20).

Archaeological data from surrounding ar-
eas suggest that the Silencio Arqueológico
applies best to the most arid areas of the
central Andes, where aridity thresholds for
early societies were critical. In contrast, a
weaker expression is to be expected in the
more humid highlands of northern Chile
(north of 20°S, such as Salar Huasco) and
Peru (21). In northwest Argentina, the Silen-
cio Arqueológico is found in four of the six
known caves (22) [see review in (23)]. It is
also found on the coast of Peru in sites that
are associated with ephemeral streams (24).
The southern limit in Chile and northwest
Argentina has yet to be explored.
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Network Motifs: Simple Building
Blocks of Complex Networks

R. Milo,1 S. Shen-Orr,1 S. Itzkovitz,1 N. Kashtan,1 D. Chklovskii,2

U. Alon1*

Complex networks are studied across many fields of science. To uncover their
structural design principles, we defined “network motifs,” patterns of inter-
connections occurring in complex networks at numbers that are significantly
higher than those in randomized networks. We found such motifs in networks
from biochemistry, neurobiology, ecology, and engineering. The motifs shared
by ecological food webs were distinct from the motifs shared by the genetic
networks of Escherichia coli and Saccharomyces cerevisiae or from those found
in the World Wide Web. Similar motifs were found in networks that perform
information processing, even though they describe elements as different as
biomolecules within a cell and synaptic connections between neurons in Cae-
norhabditis elegans. Motifs may thus define universal classes of networks. This
approach may uncover the basic building blocks of most networks.

Many of the complex networks that occur in
nature have been shown to share global statis-
tical features (1–10). These include the “small
world” property (1–9) of short paths between
any two nodes and highly clustered connec-
tions. In addition, in many natural networks,
there are a few nodes with many more connec-
tions than the average node has. In these types

of networks, termed “scale-free networks” (4,
6), the fraction of nodes having k edges, p(k),
decays as a power law p(k) ! k–" (where " is
often between 2 and 3). To go beyond these
global features would require an understanding
of the basic structural elements particular to
each class of networks (9). To do this, we
developed an algorithm for detecting network
motifs: recurring, significant patterns of inter-
connections. A detailed application to a gene
regulation network has been presented (11).
Related methods were used to test hypotheses
on social networks (12, 13). Here we generalize
this approach to virtually any type of connec-
tivity graph and find the striking appearance of

1Departments of Physics of Complex Systems and
Molecular Cell Biology, Weizmann Institute of Sci-
ence, Rehovot, Israel 76100. 2Cold Spring Harbor Lab-
oratory, Cold Spring Harbor, NY 11724, USA.

*To whom correspondence should be addressed. E-
mail: urialon@weizmann.ac.il

Fig. 1. (A) Examples
of interactions repre-
sented by directed
edges between nodes
in some of the net-
works used for the
present study. These
networks go from the
scale of biomolecules
(transcription factor
protein X binds regu-
latory DNA regions
of a gene to regulate
the production rate
of protein Y),
through cells (neuron
X is synaptically con-
nected to neuron Y),
to organisms (X
feeds on Y). (B) All 13 types of three-node connected subgraphs.
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Milo et al., Science 298, 824-827 (2002).



describing networks

motifs:                                
small subgraphs (of interest), 
which we then count
compare counts against null 
model (random graph model)

• efficient counting is tricky          
(combinatorics + graph isomorphism)

• choice of null model key
• lots of work in this area, mainly in 

molecular biology and neuroscience
• see

Sporns and Kotter, PLoS Biol. 2, e369 (2004)
Matias et al., REVSTAT 4, 31-51 (2006)
Wong et al., Brief. in Bioinfo. 13, 202-215 (2011)



a

b

path: 
number of “hops” 
between two nodes

`a!b = 2

describing networks



network paths

http://oracleofbacon.org 1994 - present

http://oracleofbacon.org


network paths

1967



network paths

Omaha

Boston

1967
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network paths

1998



all links “local”
    most nodes far away
    high “clustering”

network paths



most links “local”
some links random
    most nodes near
    high “clustering”
    short paths can be found

network paths



all links random
    Erdos-Renyi graph    
    most nodes near
    short paths hard to find
    no “clustering”

network paths



it’s a small world after all

big world
high clustering

small world
low clustering

small world
high clustering



it’s a small world after all

2005

495,836 geo-located users
    most links “local”
    remaining links span all scales
    high clustering
    small “diameter”



network paths

path = sequence of edges 
many short paths = “small world”
social world is surprisingly small, yet 
highly “clustered”
(many locally dense groups)

open questions:
how do big social networks self-organize? 
what processes shrink big worlds?
social information filtering

a � · · · � b



describing networks

components



network terminology

component:                 
a group of connected 
nodes



network components

the percolation 
game:               choose 
X random pairs
connect them
repeat
(count components)
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the percolation 
game:               choose 
X random pairs
connect them
repeat
(count components)
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hki = 0.533

network components



the percolation 
game:               choose 
X random pairs
connect them
repeat
(count components)
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hki = 1.066

network components



the percolation 
game:               choose 
X random pairs
connect them
repeat
(count components)
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network components



the percolation 
game:               choose 
X random pairs
connect them
repeat
(count components)
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network components



the percolation 
game:               choose 
X random pairs
connect them
repeat
(count components)
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network components



• add edges randomly

• at first, components are 
small and disconnected

• at critical value, these 
components begin linking

•beyond, all nodes in single 
“giant” component

the “giant” component
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all components:
small + disconnected

one giant component, 
some tiny components



• component = connected group
• component dynamics are independent 

(no information flow)
• phase transition: sudden emergence of 

new behavior (giant component)

open questions:
• other network properties + phase transitions
• adaptive wiring
• local vs. global connectivity rules

network components


