

Aaron Clauset (a) @aaronclauset Professor of Computer Science University of Colorado Boulder External Faculty, Santa Fe Institute

lecture 2: degrees, positions, and communities

Mark Newman

Professor of Physics University of Michigan

External Faculty Santa Fe Institute

http://www-personal.umich.edu/~mejn/

OXFORD Networks Second Edition Mark Newman

University of Colorado Boulder

Network Analysis and Modeling

Instructor: Aaron Clauset or Daniel B. Larremore

This graduate-level course will examine modern techniques for analyzing and modeling the structure and dynamics of complex networks. The focus will be on statistical algorithms and methods, and both lectures and assignments will emphasize model interpretability and understanding the processes that generate real data. Applications will be drawn from computational biology and computational social science. No biological or social science training is required. (Note: this is not a scientific computing course, but there will be plenty of computing for science.)

Full lectures notes online (~150 pages in PDF) <u>https://aaronclauset.github.io/courses/5352/</u>

Biological Networks

Instructor: Aaron Clauset

This undergraduate-level course examines the computational representation and analysis of biological phenomena through the structure and dynamics of networks, from molecules to species. Attention focuses on algorithms for clustering network structures, predicting missing information, modeling flows, regulation, and spreading-process dynamics, examining the evolution of network structure, and developing intuition for how network structure and dynamics relate to biological phenomena.

Full lectures notes online (~150 pages in PDF) <u>https://aaronclauset.github.io/courses/3352/</u>

Software

R Python Matlab NetworkX [python] igraph [python, R, c++] graph-tool [python, c++] GraphLab [python, c++]

Standalone editors

UCI-Net NodeXL Gephi Pajek Network Workbench Cytoscape yEd graph editor Graphviz

Network data sets Colorado Index of Complex Networks icon.colorado.edu Index of Complex Networks NETWORK NETWORK NETWORK NETWORK

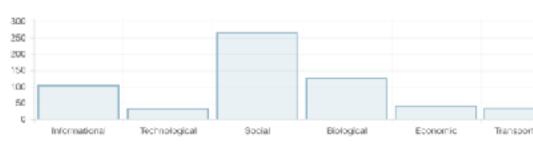
The Colorado Index of Complex Networks (ICON)

ICON is a comprehensive index of research-quality network data sets from all domains of netwo including social, web, information, biological, ecological, connectome, transportation, and techn networks.

Each network record in the index is annotated with and searchable or browsable by its graph pr description, size, etc., and many records include links to multiple networks. The contents of ICC curated by volunteer experts from Prof. Aaron Clauset's research group at the University of Cold Boulder.

Click on the NETWORKS tab above to get started.

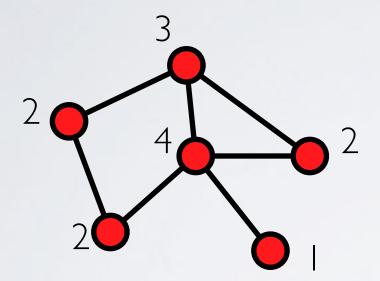
Entries found: 609 Networks found: 4419



- I. defining a network
- 2. describing a network
- 3. null models and statistical inference for networks

three main types of descriptive statistics:

- I. connectivity (degree, etc.)
- 2. geometric (paths, distances, etc.)
- 3. motifs (small subgraphs, triangles, etc.)



degree: number of connections k

$$k_i = \sum_j A_{ij}$$

when does node degree matter?

spreading processes on networks

network edges are the mechanism of transmission

biological (diseases)

SIS and SIR models

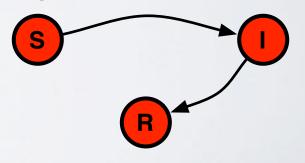
social (information)

- SIS, SIR models
- threshold models

threshold

susceptible-infected-susceptible

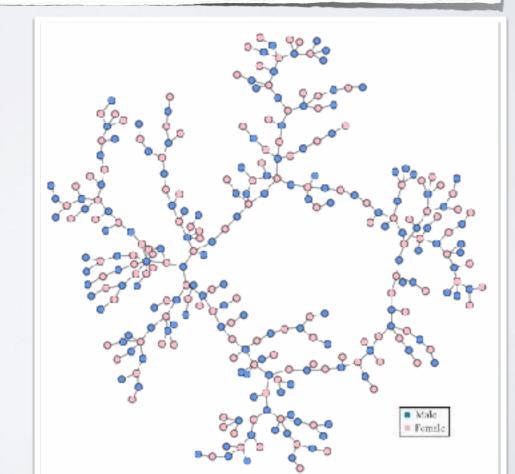
susceptible-infected-recovered



Chains of Affection: The Structure of 2004 Adolescent Romantic and Sexual Networks

Peter S. BearmanJames MoodyKatherine StovelColumbia UniversityOhio State University University of Washington

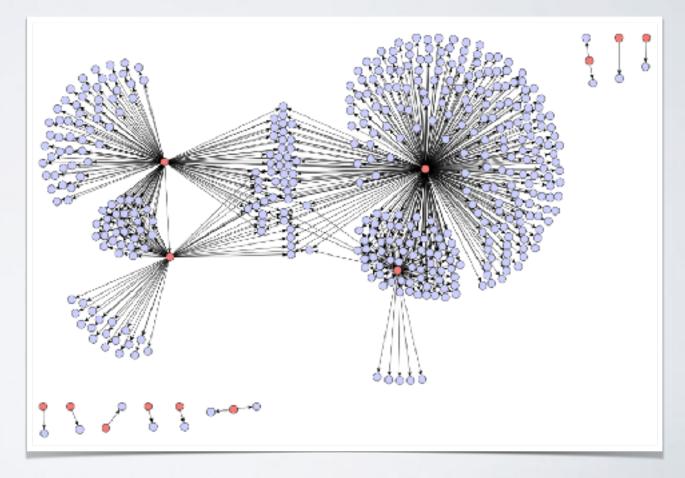
- relationship network in "Jefferson High"
- this subgraph is
 52% of school
- who are most important disease spreaders?

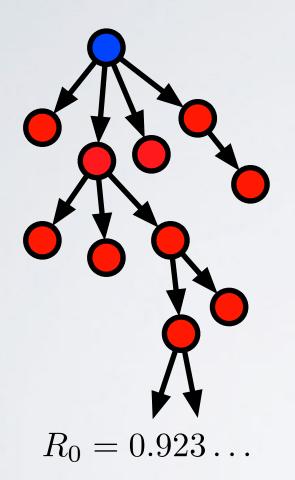


The Dynamics of Viral Marketing 2007

JURE LESKOVEC LADA A. ADAMIC BERNARDO A. HUBERMAN

- amazon.com viral marketing
- viral trace for ''Oh my Goddess!'' community
- very high degrees!
- most attempts to ''influence'' fail



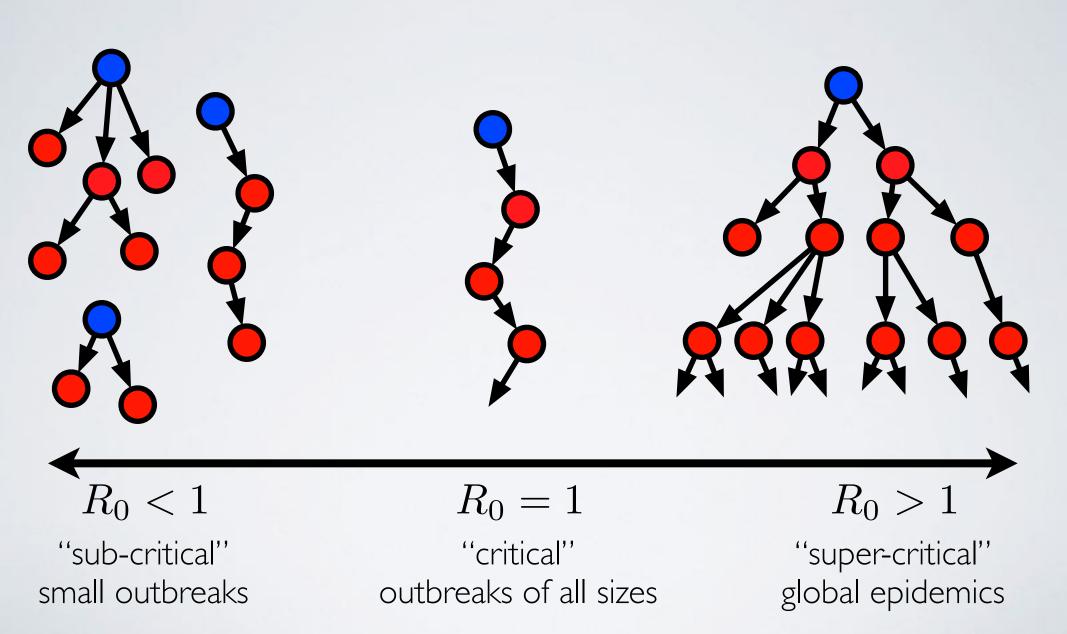


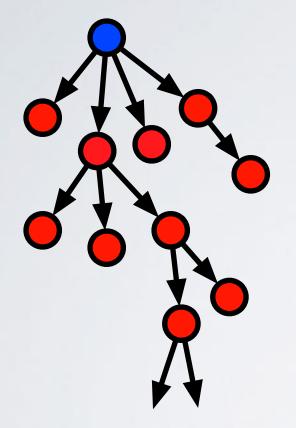
cascade epidemic branching process spreading process

 R_0 = net reproductive rate = average degree $\langle k \rangle$

caveat:

ignores network structure, dynamics, etc.

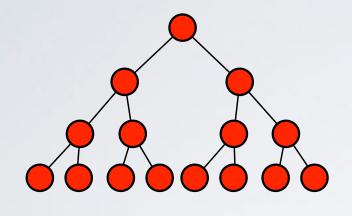




disease	R_0	transmission	vax.
measles	12 - 18	airborne	90 - 95%
chickenpox	7 - 12		85 - 90%
polio	5 - 7	fecal-oral route	82 - 87%
small pox	1.5 - 20 +	airborne droplet	70 - 80%
H1N1 flu	1 - 3	airborne droplet	$\approx 67\%$
ebola	1.5 - 2.5	bodily fluids	
zika	2		
covid-19 (wildtype)	pprox 2.4	aerosols	$\approx 60\%$
covid-19 (alpha)	4 - 5	aerosols	75 - 80%
covid-19 (delta)	5 - 8	aerosols	80 - 88%
covid-19 (omicron)	10 - 14	aerosols	90 - 93%

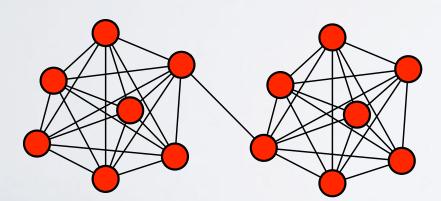
all super-critical

some numbers from Lauren Ancel Meyers (UT Austin)



bigger cascades

- smaller overlap among neighbors
- more expander-like [more like a random graph]
- higher transmission probability
- lower activation threshold



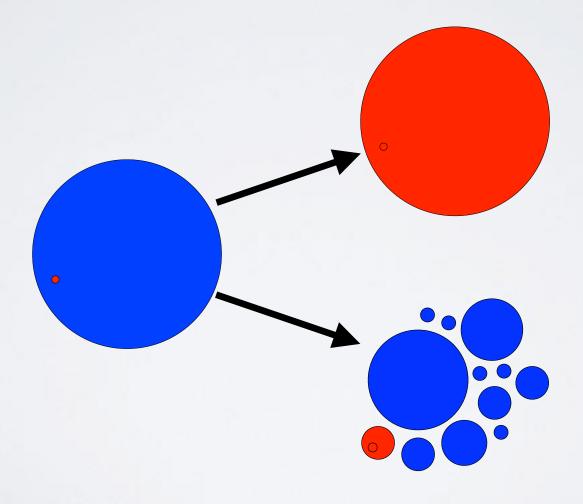
Volz, J. Math. Bio. 56, 293–310 (2008) Bansal et al., J. Royal Soc. Interface 4, 879–891 (2007) Karrer and Newman, Phys. Rev. E 82, 016101 (2010) Salathe and Jones, PLoS Comp. Bio. 6, e1000736 (2010)

smaller cascades

- larger overlap among neighbors
- more triangles
- smaller "communities"
- more spatial-like organization
- lower transmission probability
- higher activation threshold

how could we halt the spread?

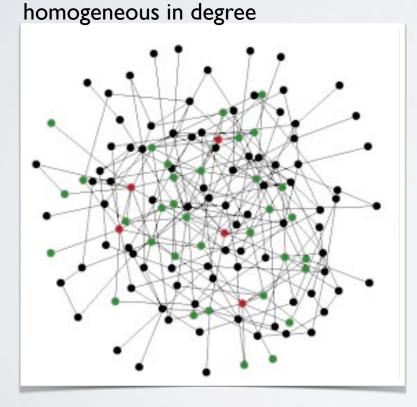
• break network into disconnected pieces



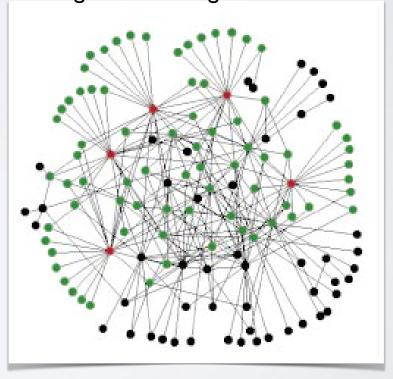
two networks

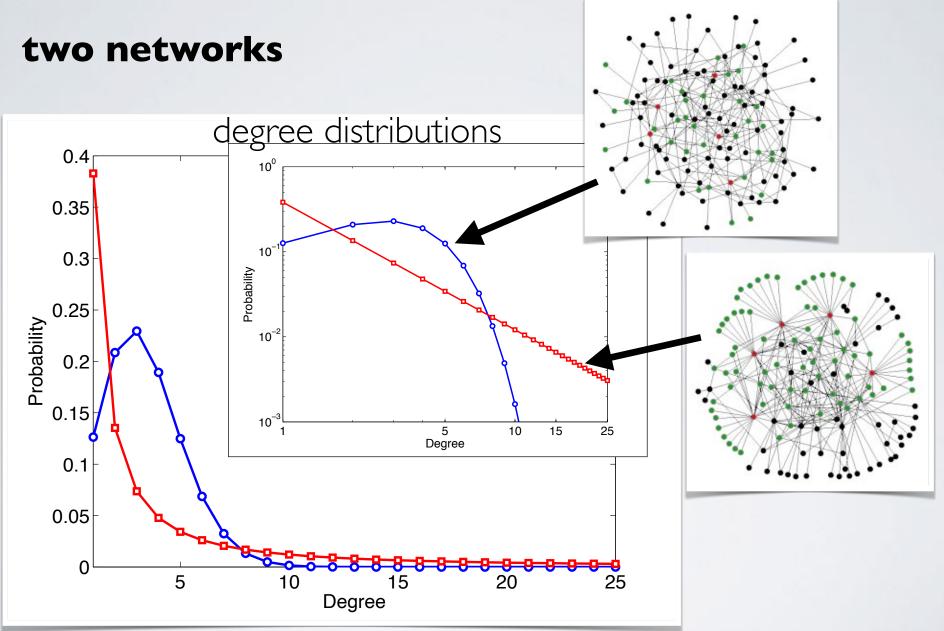
Error and attack tolerance 2000 **of complex networks**

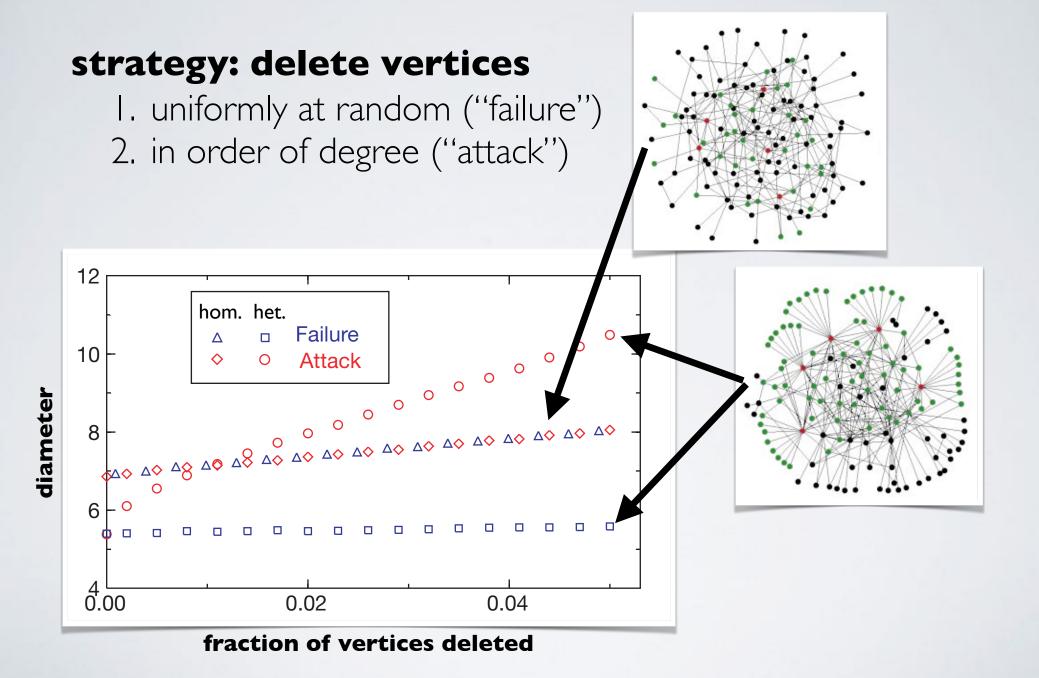
Réka Albert, Hawoong Jeong & Albert-László Barabási



heterogeneous in degree

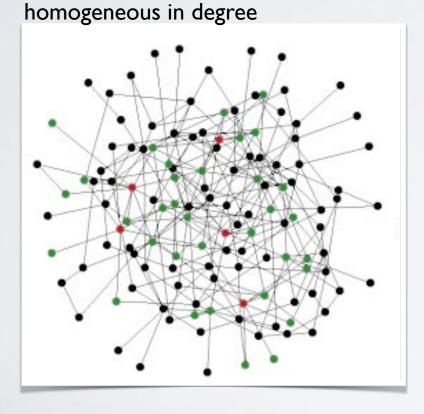


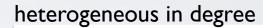


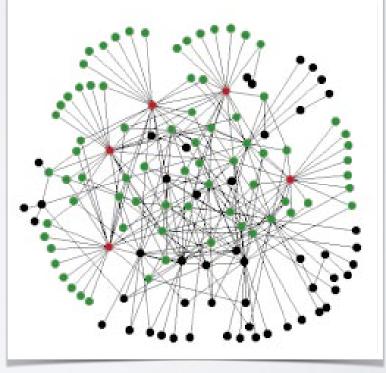


what promotes spreading?

- high-degree vertices*
- centrally-located vertices



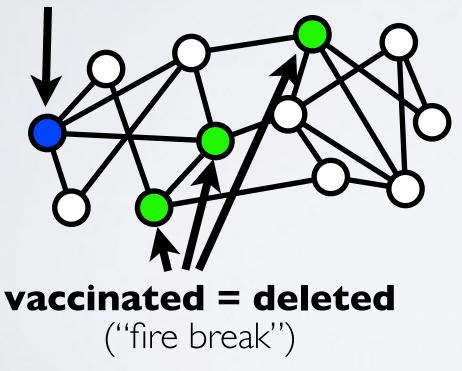




strategy: delete vertices

3. build "fire breaks"

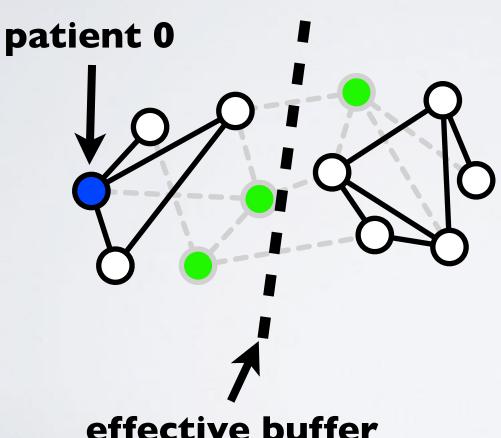
patient 0



software packages for simulating epidemics on networks

I. Epidemics on Networks (EoN) <u>https://epidemicsonnetworks.readthedocs.io/en/latest/</u>

2. SEIR+ Model https://github.com/ryansmcgee/seirsplus



vaccination strategies

- the "front line" (hospitals)
- high degree nodes
- the vulnerable (old/young)

effective buffer

software packages for simulating epidemics on networks

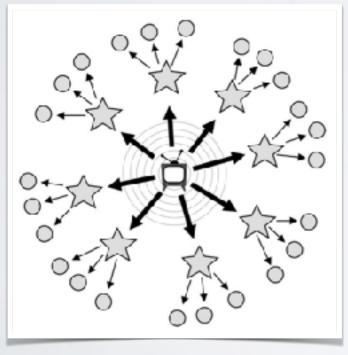
I. Epidemics on Networks (EoN) https://epidemicsonnetworks.readthedocs.io/en/latest/

2. SEIR+ Model https://github.com/ryansmcgee/seirsplus

but, in social networks...

Influentials, Networks, and Public Opinion Formation

DUNCAN J. WATTS PETER SHERIDAN DODDS*



broadcast influence

Watts & Dodds, Journal of Consumer Research 34 (2007)

classic information marketing

2007

- message saturation
- degree is most important

Influentials, Networks, and Public Opinion Formation

DUNCAN J. WATTS PETER SHERIDAN DODDS*

network influence

• "network" (decentralized) marketing

2007

- high-degree = "opinion leader"
- high-degree alone = irrelevant
- a cascade requires a legion of susceptibles (a system-level property)

Watts & Dodds, Journal of Consumer Research 34 (2007)

Oscar Wilde @oscarwilde (1854-1900)	Sellow
	60 TWEETS
	382 FOLLOWING
	16,351 FOLLOWERS
,	ng worse than being is not being talked about."

- "influence" not really about the influencer
- as much about the susceptibles

how to start a **social movement**?

how to start a **social movement**?

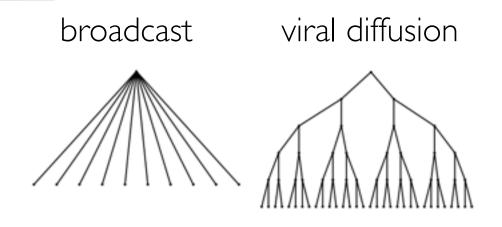
http://sivers.org/ff

The Structural Virality of Online Diffusion

Sharad Goel, Ashton Anderson

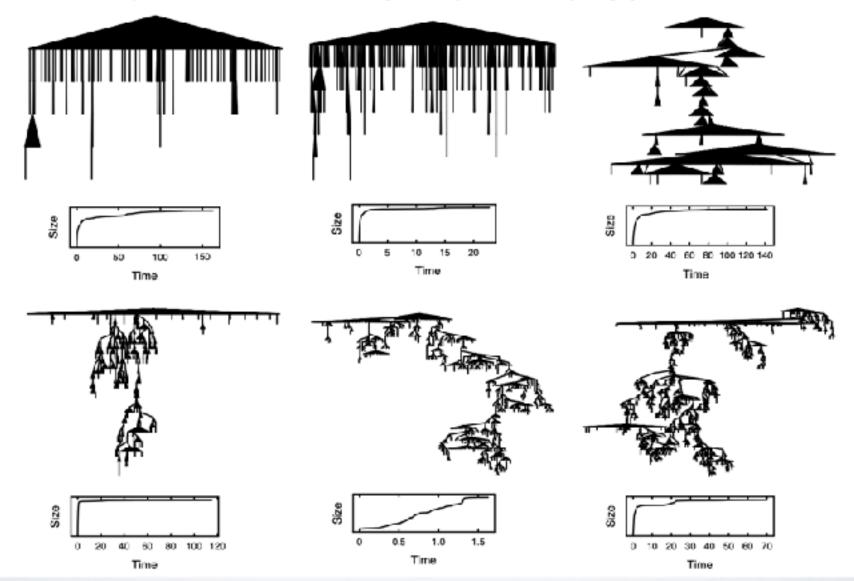
Stanford University, Stanford, California, 94305 [scgoel@stanford.edu, ashton@cs.stanford.edu]

Jake Hofman, Duncan J. Watts Microsoft Research, New York, New York 10016 {jmh@microsoft.com, duncan@microsoft.com} 2015



- I billion diffusion events, on twitter
- virality measure for each cascade
- cascade sizes are extremely high variance (maybe power law...)

Figure 3 A Random Sample of Cascades Stratified and Ordered by Increasing Structural Virality, Ranging from 2 to 50



• enormous diversity of cascade shapes, depths

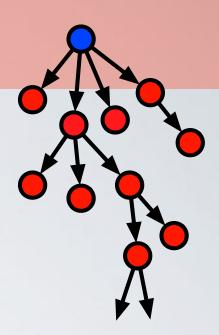
Goel, et al. Management Science 62 (2015)

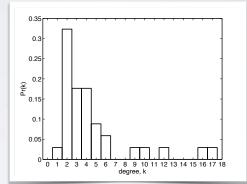
degrees:

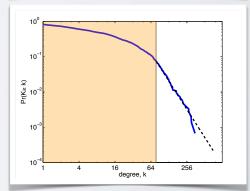
- first-order description of network structure
- direct implications for spreading processes
- cascades require both susceptible population and spreaders

open questions:

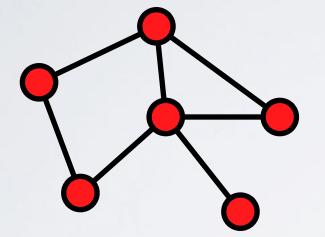
- impact of degrees on other dynamics
- feedback from dynamics to degree [adaptive behaviors like self-quarantine, evangelism]
- when does degree not matter?

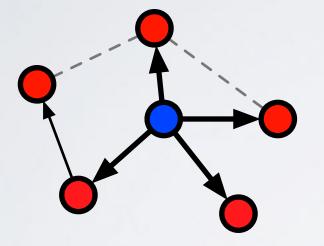






position





Boldi & Vigna, arxiv: 1308.2140 (2013) Borgatti, Social Networks 27, 55–71 (2005)

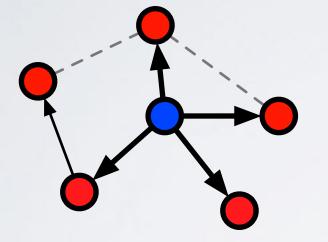
position = centrality:

structural vs. dynamical importance

j.	harmonic centrality		
geometric	closeness centrality		
	betweenness centrality		
connectivity	degree centrality		
	eigenvector centrality		
nnec	PageRank		
0	Katz centrality		

many many more...

structural importance = cheap estimate of dynamical importance (aka "influence")

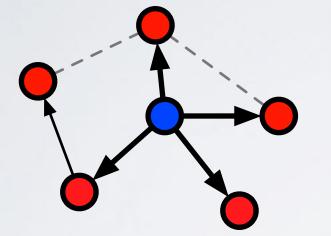


position = centrality:

structural vs. dynamical importance

centrality = unsupervised node ranking

 $f: G \to \vec{v}$



position = centrality:

harmonic, closeness centrality

importance = being in "center" of the network

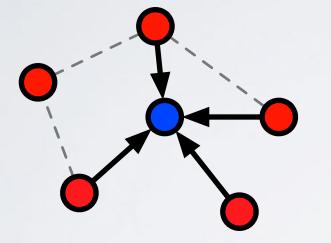
harmonic $c_i = \frac{1}{n-1} \sum_{\substack{j \neq i}} \frac{1}{d_{ij}}$

length of shortest path ℓ_{ij} '

distance: $d_{ij} =$

if j reachable from i otherwise

Boldi & Vigna, arxiv: 1308.2140 (2013) Borgatti, Social Networks 27, 55-71 (2005)



position = centrality:

PageRank, Katz, eigenvector centrality

importance = sum of importances* of nodes that point at you

$$I_i = \sum_{j \to i} \frac{I_j}{k_j}$$

or, the right eigenvector of $\mathbf{A}\mathbf{x} = \lambda \, \mathbf{x}$

network position

an example

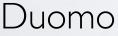
Giovanni de Medici

network position

Robust Action and the Rise of the Medici, 1400–1434¹

John F. Padgett and Christopher K. Ansell

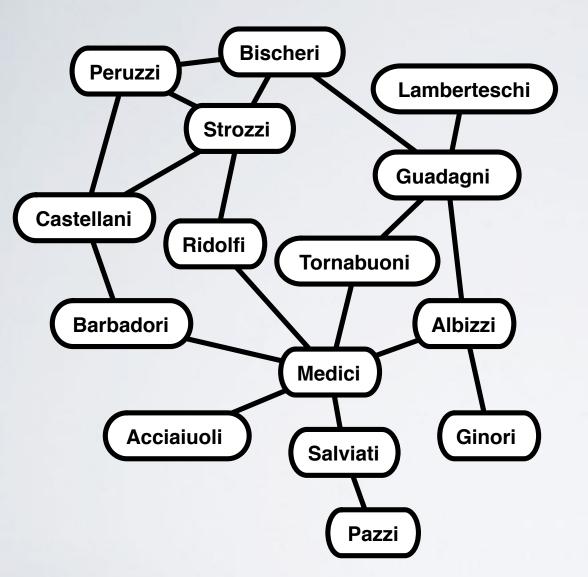
1993



Palazzo Medici

Giovanni de Medici

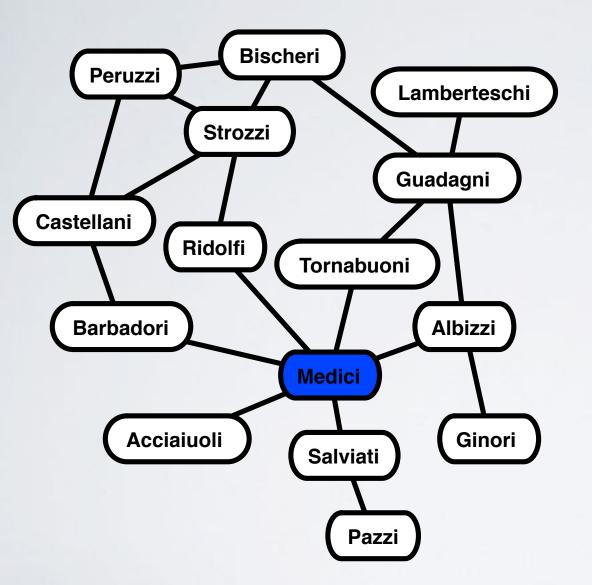
network position: harmonic



nodes: Florence families **edges**: inter-family marriages

which family is most central?

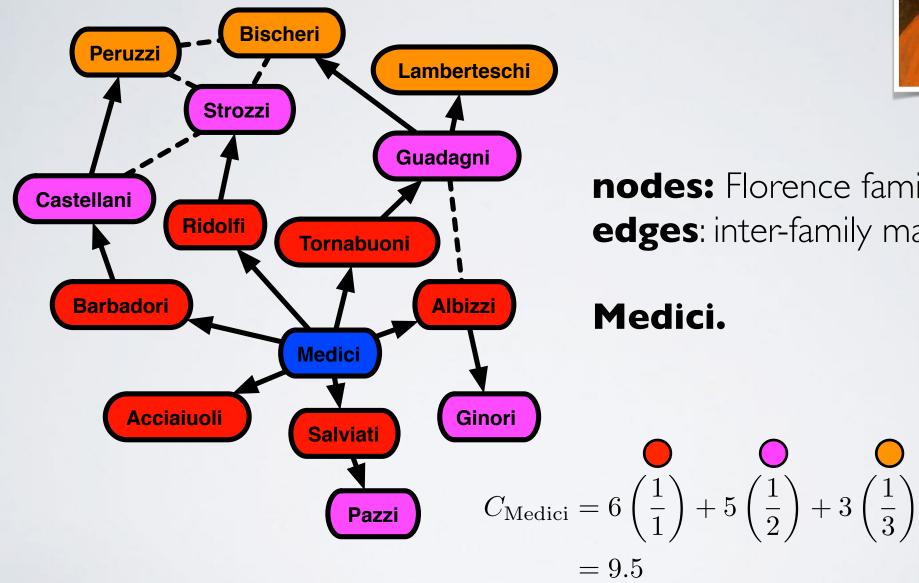
network position: closeness



nodes: Florence families **edges**: inter-family marriages

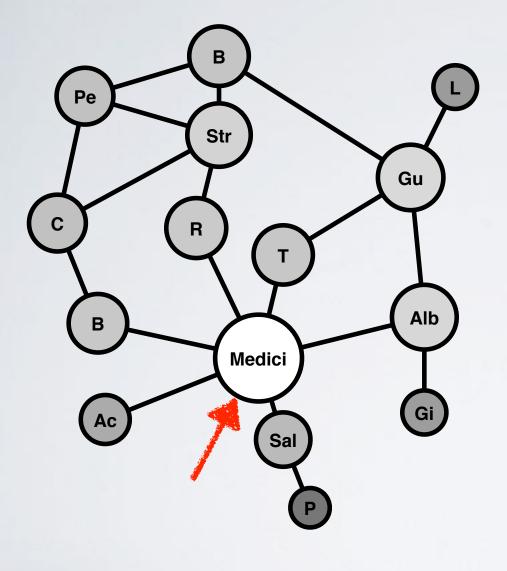
Medici?

network position: closeness



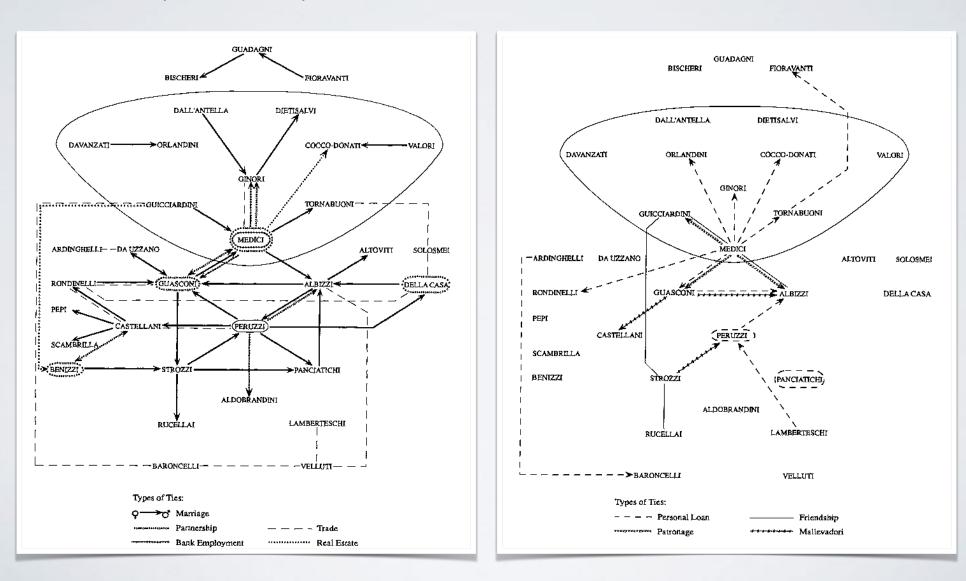
nodes: Florence families edges: inter-family marriages

network position: harmonic



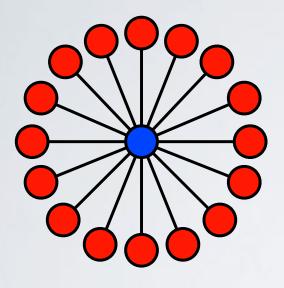
Medici 9.5 Guadagni 7.92 Albizzi 7.83 Strozzi 7.67 Ridolfi 7.25 **Bischeri** 7.2 Tornabuoni 7.17 Barbadori 7.08 Peruzzi 6.87 Castellani 6.87 Salviati 6.58 Acciaiuoli 5.92 Ginori 5.33 Lamberteschi 5.28 Pazzi 4.77

actually, it's complicated...



most centralized vast wilderness of in-between

most decentralized





most centralized vast wilderness of in-between

most decentralized



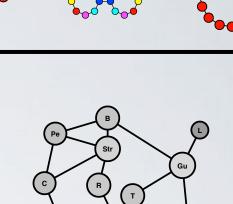
most centralized vast wilderness of in-between most decentralized

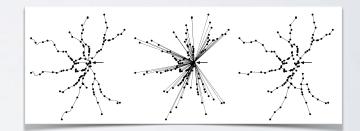
positions:

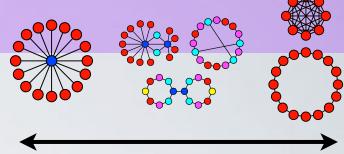
- geometric description of network structure
- core vs. periphery
- centrality = importance, influence
- nearly all centrality scores highly correlated

open questions:

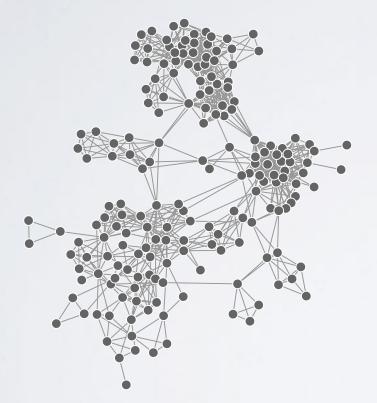
- position and dynamics
- what does position predict?
- when does position *not* matter?

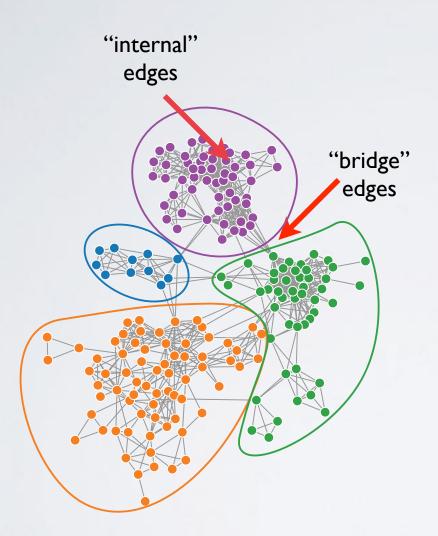






community structure





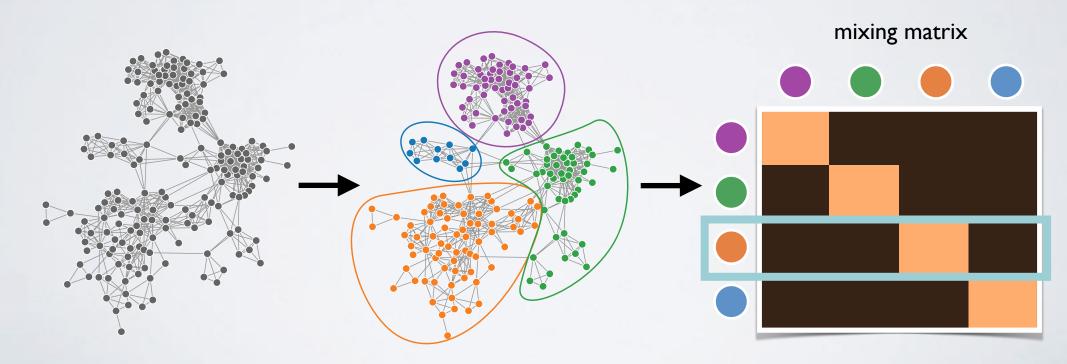
community structure:

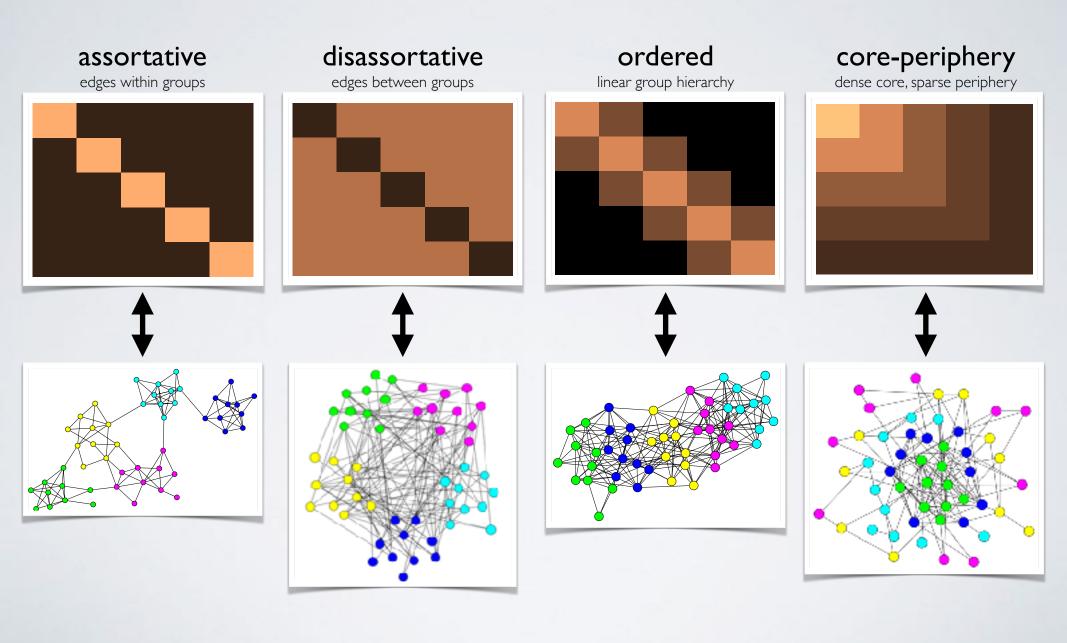
a group of vertices that connect to other groups in similar ways

assortative community structure (edges inside the groups)

community structure:

a group of vertices that connect to other groups in similar ways





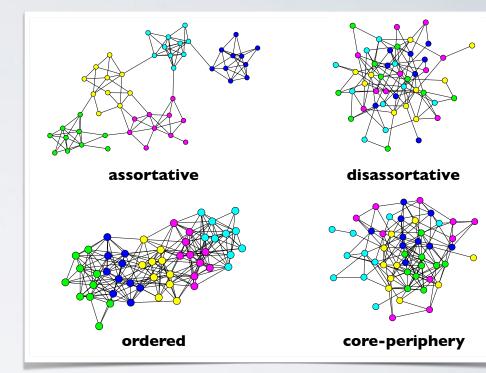
- enormous interest, especially since 2000
- dozens of algorithms for extracting various large-scale patterns
- hundreds of papers published
- spanning Physics, Computer Science, Statistics, Biology, Sociology, and more
- this was one of the first:

Community structure in social and biological networks

M. Girvan*^{1‡} and M. E. J. Newman*⁵

PNAS 2002

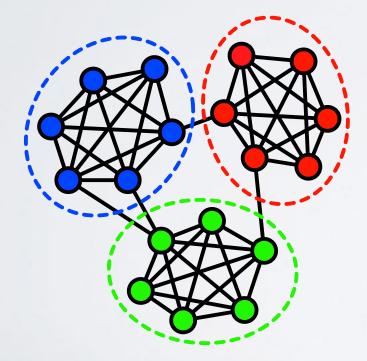
12,421+ citations on Google Scholar



1983

THE STRENGTH OF WEAK TIES: A NETWORK THEORY REVISITED

Mark Granovetter



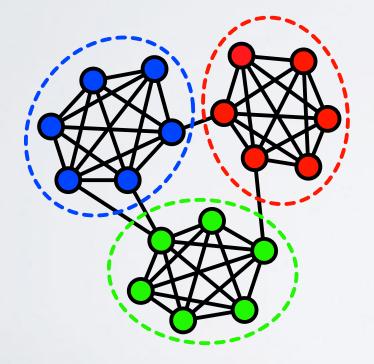
most new job opportunities from ''weak ties''

- within-community links = strong
- bridge links = weak

1983

THE STRENGTH OF WEAK TIES: A NETWORK THEORY REVISITED

Mark Granovetter



most new job opportunities from ''weak ties''

- within-community links = strong
- bridge links = weak

why?

information propagates *quickly within* a community, but *slowly between* communities

Finding community structure in very large networks

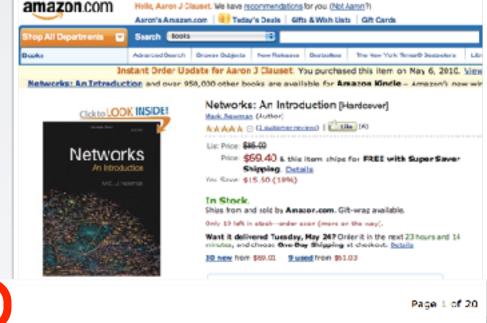
Aaron Clauset, M. E. J. Newman, and Cristopher Moore 2004

amazon.com co-purchasing network

Finding community structure in very large networks

Aaron Clauset, M. E. J. Newman, and Cristopher Moore 2004

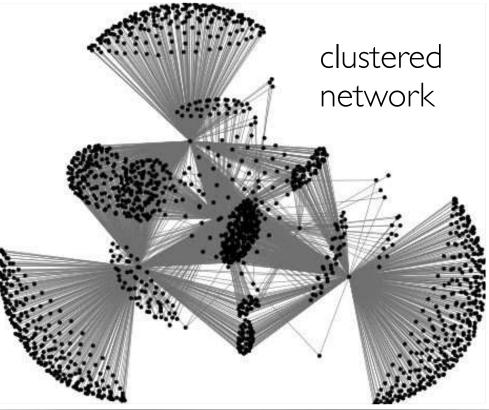
amazon.com co-purchasing network find partition that maximizes modularity Q on those groups

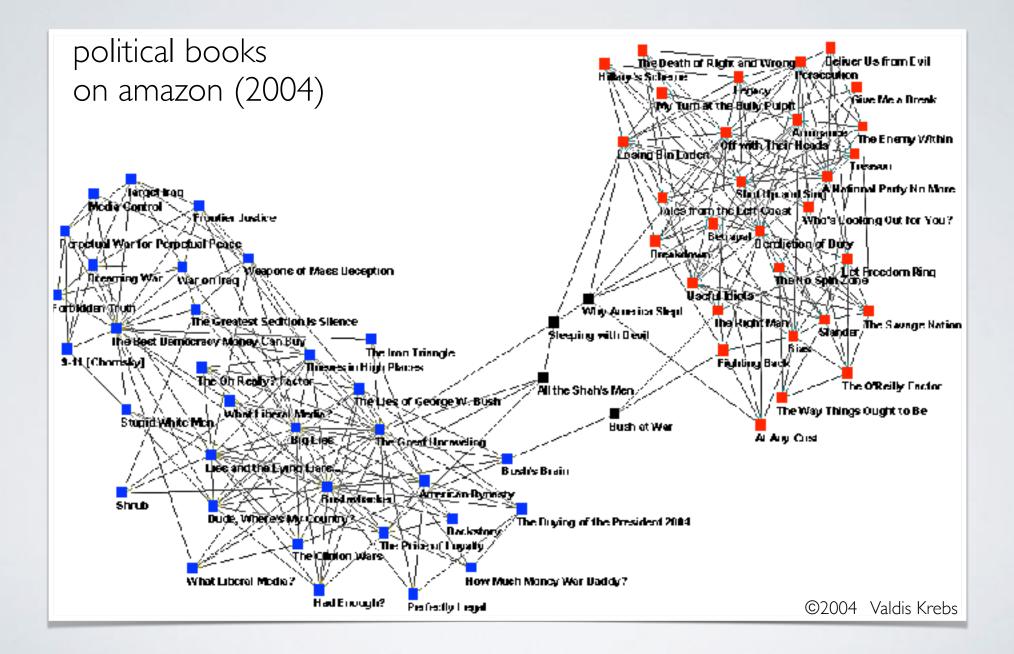


n = 409,687 items m = 2,464,630 edges

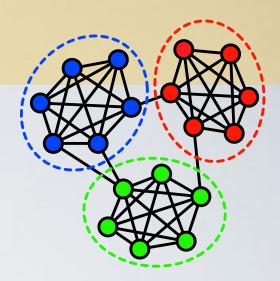
Rank	Size	Description		
1	114538	General interest: politics; art/literature; general fiction; human nature; technical books; how things,		
		people, computers, societies work, etc.		
2	92276	The arts: videos, books, DVDs about the creative and performing arts		
3	78661	Hobbies and interests I: self-help; self-education; popular science fiction, popular fantasy; leisure; etc.		
4	54582	Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic		
		fiction; some western religious material; etc.		
5	9872	classical music and related items		
6	1904	children's videos, movies, music and books		
7	1493	church/religious music; African-descent cultural books; homoerotic imagery		
8	1101	pop horror; mystery/adventure fiction		
9	1083	jazz; orchestral music; easy listening		
10	947	engineering; practical fashion		

purchases = interests
interests = clustered





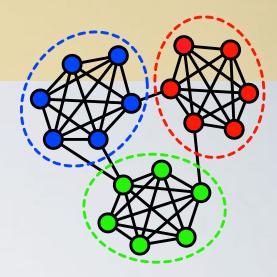
- community = vertices with same pattern of inter-community connections
- network macro-structure
- finding them like "network clustering" [there is no best algorithm, and there is No Free Lunch]
- allow us to coarse grain system structure [decompose heterogeneous structure into homogeneous blocks]
- constrains network synchronization, information flows, diffusion, influence



- community = vertices with same pattern of inter-community connections
- network macro-structure
- finding them like "network clustering" [there is no best algorithm, and there is No Free Lunch]
- allow us to coarse grain system structure [decompose heterogeneous structure into homogeneous blocks]
- constrains network synchronization, information flows, diffusion, influence

open questions:

- what processes generate communities?
- what impact on dynamics? network function?



aka, summarizing a network's structure

$$f: G \to \{x_1, \dots, x_k\}$$

summary statistics

aka, summarizing a network's structure

at the level of

nodes	meso	whole network
degree	group degree	size (num. nodes
centrality (various)	group size	mean degree
reciprocity (local)	modularity	mean geodesic o
clustering coeff. (local)	mixing matrix	diameter
eccentricity	hierarchy	assortativity (deg
	motif counts	modularity

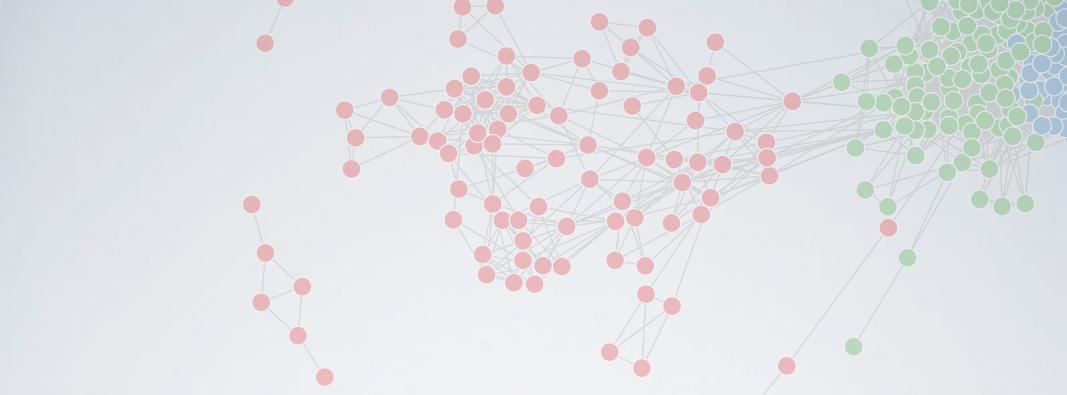
. . .

um. nodes) legree eodesic dist. er tivity (degree) modularity reciprocity (global) clustering coeff. (global)

. . .

aka, summarizing a network's structure

- just counting things : $f: G \to \{x_1, \ldots, x_k\}$
- an infinite number of things you could count which ones are meaningful to count?
- **warning** : nearly all summary statistics correlate with degree
- things to ponder : what is a node? what is an edge?
 - how do nodes interact?
 - what **causes** connections to change over time?
 - where is the **structure** : nodes? communities? network?
 - what is the role of node **degree** on dynamics?
 - what is role of node **position** on dynamics?



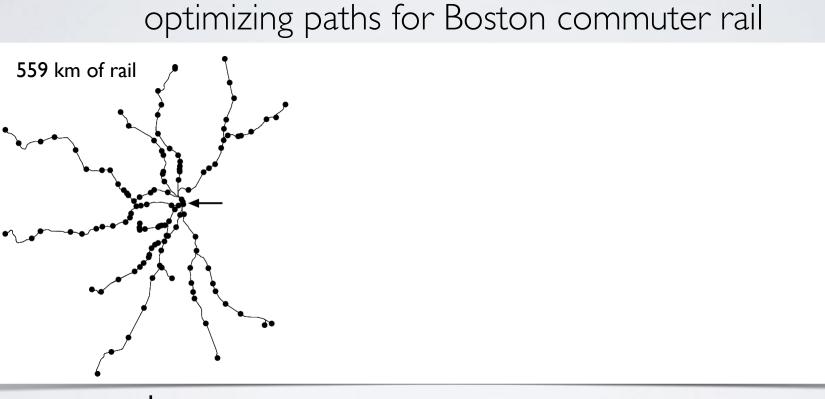
end of lecture 2

lecture 3 : null models & inference for networks

an example

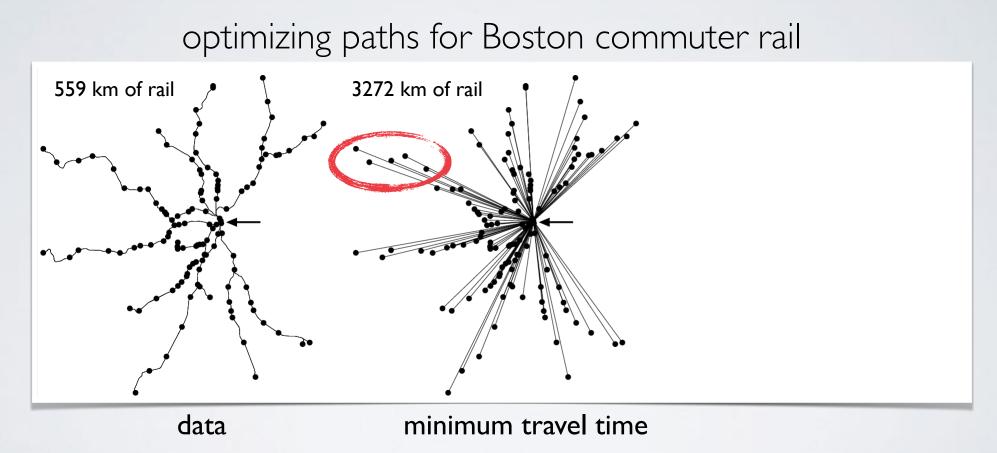
how does a network become centralized?

an example



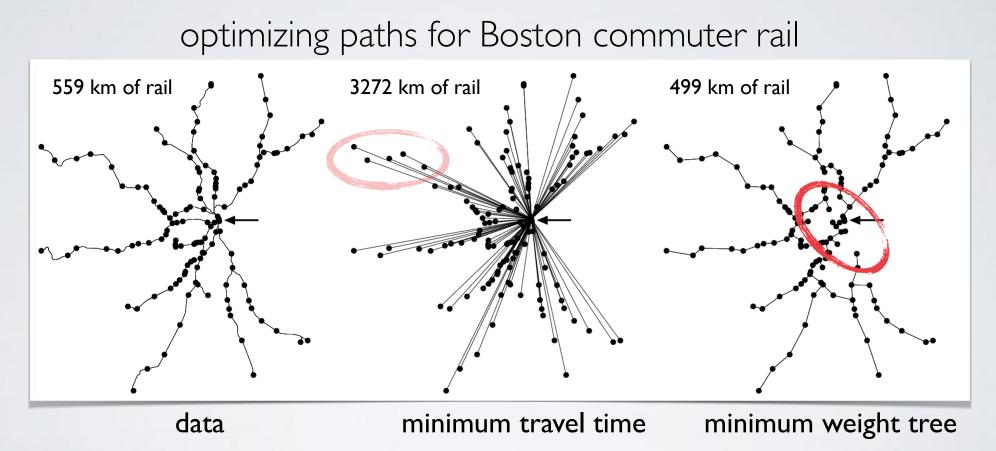
data

an example



Gastner & Newman, J. Stat. Mech. P01015 (2006)

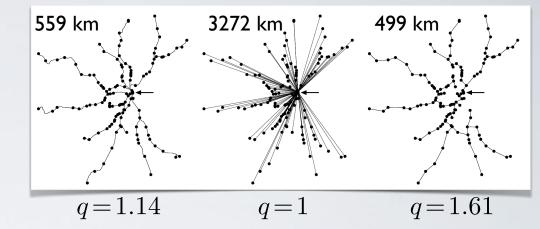
an example



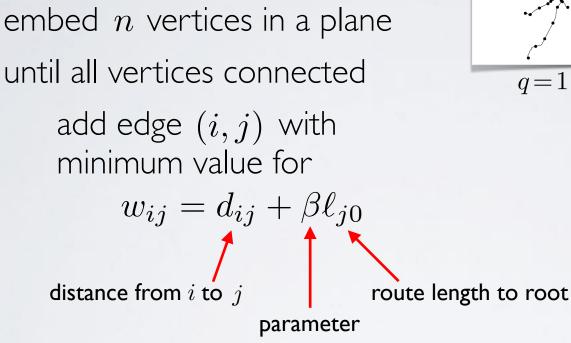
route factor

$$q = \frac{1}{n} \sum_{i=1}^{n} \frac{\ell_{i0}}{d_{i0}}$$

mean ratio of distance along edges ℓ_{i0} to direct Euclidean distance d_{i0} to root 0



a simple model



 $\beta = 0 \longrightarrow$ minimum spanning tree* $\beta > 0 \longrightarrow$ prefer shorter paths to root

559 km

 $q=1.14 \qquad q=1 \qquad q=1.61$

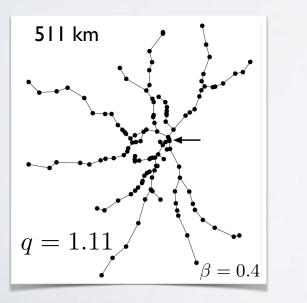
3272 km

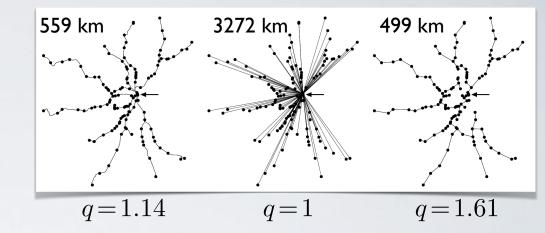
499 km

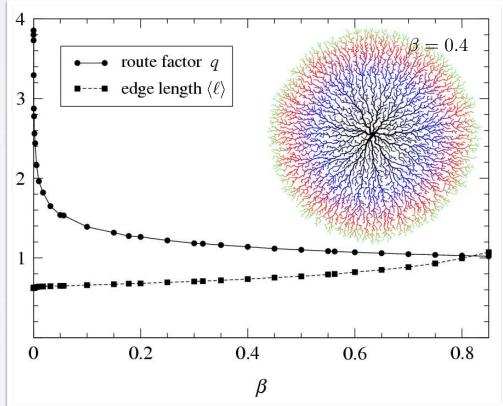
a simple model

embed n vertices in a plane until all vertices connected add edge (i, j) with minimum value for

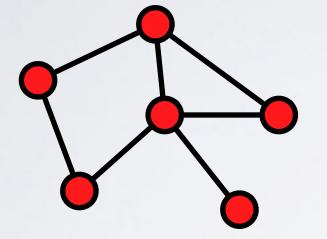
 $w_{ij} = d_{ij} + \beta \ell_{j0}$







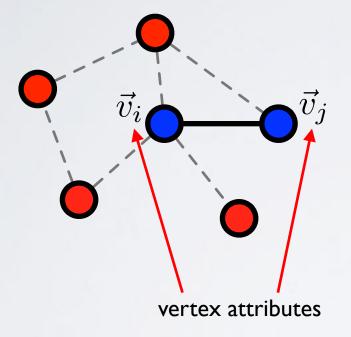
Gastner & Newman, J. Stat. Mech. P01015 (2006)



homophily and assortative mixing

like links with like

assortative mixing



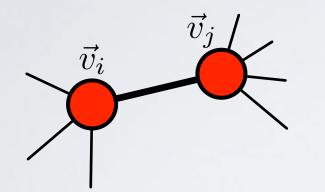
homophily and assortative mixing

like links with like

assortativity coefficient r quantifies homophily

three types: scalar attributes vertex degrees categorical variables

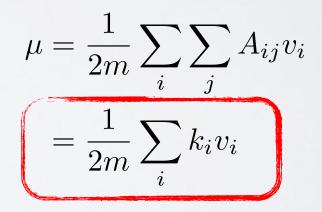
assortative mixing

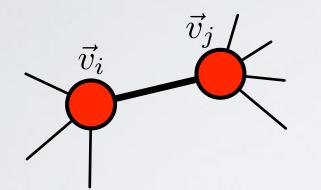


homophily and assortative mixing

like links with like

scalar attributes: mean value across ties



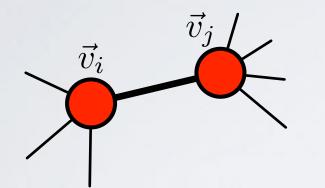


homophily and assortative mixing

like links with like

scalar attributes: covariance across ties

$$\operatorname{cov}(v_i, v_j) = \frac{\sum_{ij} A_{ij}(v_i - \mu)(v_j - \mu)}{\sum_{ij} A_{ij}}$$
$$= \frac{1}{2m} \sum_{ij} A_{ij} v_i v_j - \mu^2$$
$$= \frac{1}{2m} \sum_{ij} \left(A_{ij} - \frac{k_i k_j}{2m} \right) v_i v_j$$



homophily and assortative mixing

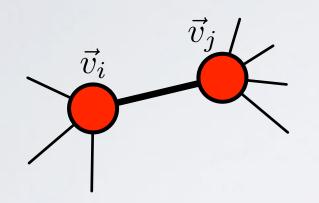
like links with like

assortativity coefficient (scalar)

$$r = \frac{\operatorname{cov}(v_i, v_j)}{\operatorname{var}(v_i, v_j)}$$
$$= \frac{\sum_{ij} (A_{ij} - k_i k_j / 2m) v_i v_j}{\sum_{ij} k_i \delta_{ij} - k_i k_j / 2m}$$

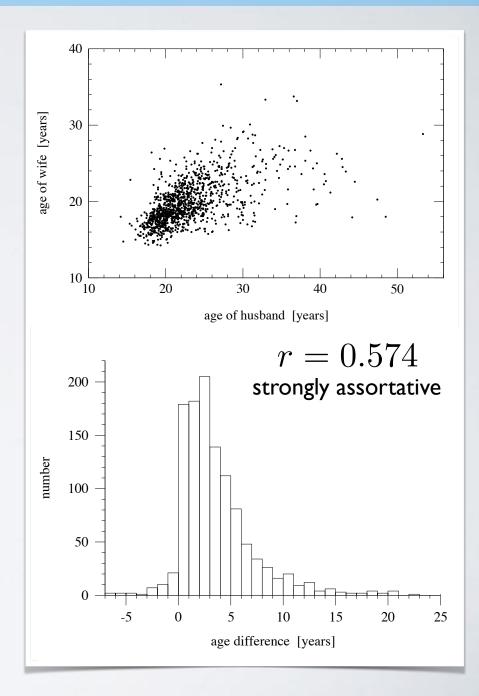
[this is just a Pearson correlation across edges]

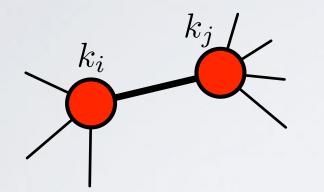
 $-1 \leq r \leq 1$



(top) scatter plot of ages of 1141 married couples at time of marriage [1995 US National Survey of Family Growth]

(bottom) histogram of age differences (M-F) for same data





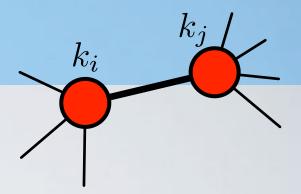
homophily and assortative mixing

like links with like

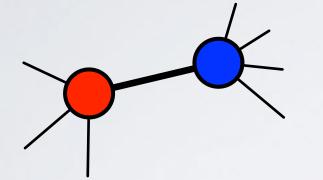
degree: just another scalar*

Newman, Phys. Rev. E 67, 026126 (2003).

* the assortativity coefficient formula simplifies somewhat in this case. see the Ref in the left corner for more details



			degree			
		network	type	size n	assortativity r	error σ_r
	$\operatorname{social} \left\{ \right.$	physics coauthorship	undirected	52909	0.363	0.002
		biology coauthorship	undirected	1520251	0.127	0.0004
		mathematics coauthorship	undirected	253339	0.120	0.002
		film actor collaborations	undirected	449913	0.208	0.0002
		company directors	undirected	7673	0.276	0.004
		student relationships	undirected	573	-0.029	0.037
		email address books	directed	16881	0.092	0.004
	$technological \begin{cases} \\ \\ \\ \\ \\ \end{cases}$	power grid	undirected	4941	-0.003	0.013
		Internet	undirected	10697	-0.189	0.002
		World-Wide Web	directed	269504	-0.067	0.0002
		software dependencies	directed	3162	-0.016	0.020
	biological {	protein interactions	undirected	2115	-0.156	0.010
		metabolic network	undirected	765	-0.240	0.007
		neural network	directed	307	-0.226	0.016
		marine food web	directed	134	-0.263	0.037
		freshwater food web	directed	92	-0.326	0.031



homophily and assortative mixing

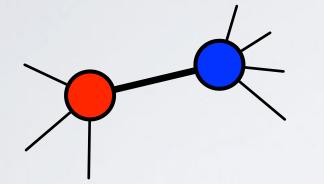
like links with like

categorical variables: let e_{ij} be fraction of edges connecting vertices of type i to vertices of type j

matrix sum

$$\sum_{ij} e_{ij} = 1$$

marginals $\sum_{i} e_{ij} = a_i$ $\sum_{i} e_{ij} = b_j$



homophily and assortative mixing

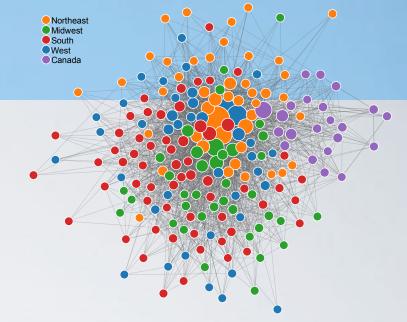
like links with like

categorical variables: assortativity coefficient*

$$r = \frac{\sum_{i} e_{ii} - \sum_{i} a_{i}b_{i}}{1 - \sum_{i} a_{i}b_{i}}$$
$$= \frac{\operatorname{Tr} \mathbf{e} - ||\mathbf{e}^{2}||}{1 - ||\mathbf{e}^{2}||}$$

* this equation is equivalent to the popular *modularity* measure Q used to score the strength of community structure

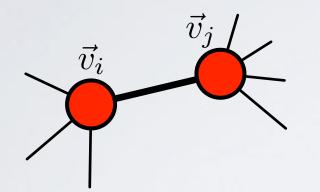
4388 Computer Science faculty vertices are PhD granting institutions in North America edge (u, v) means PhD at u and now faculty at vlabels are US census regions + Canada



	Northeast	Midwest	South	West	Canada	a_u
Northeast	0.237	0.084	0.098	0.104	0.028	0.552
Midwest	0.084	0.134	0.088	0.059	0.016	0.381
South	0.098	0.088	0.166	0.068	0.012	0.432
West	0.104	0.059	0.068	0.145	0.017	0.393
Canada	0.028	0.016	0.012	0.017	0.170	0.242
a_u	0.552	0.381	0.432	0.393	0.242	

r = 0.215

moderately assortative

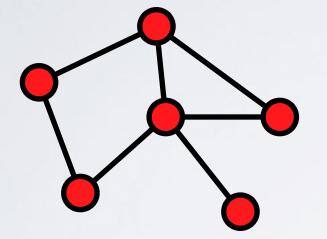


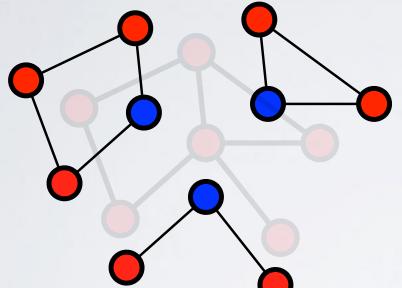
homophily and assortative mixing

like links with like

- random graphs tend to be disassortative $r \leq 0$ because the mixing is uniform
- social networks (apparently) highly assortative, in every way (attribute, degree, category)
- extremal values $r \approx \{-1, 1\}$ suggest underlying mechanism on that variable

motifs

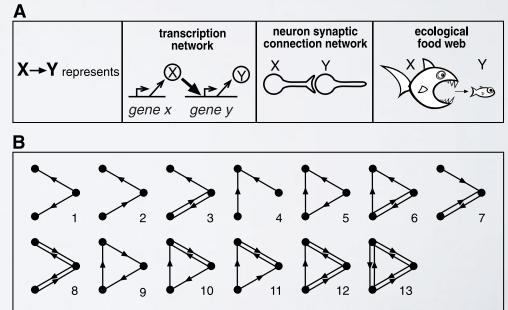


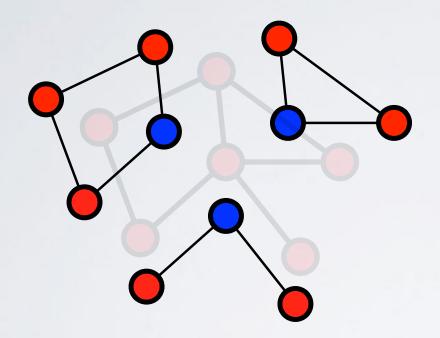


motifs:

small subgraphs (of interest), which we then count

compare counts against null model (random graph model)





motifs:

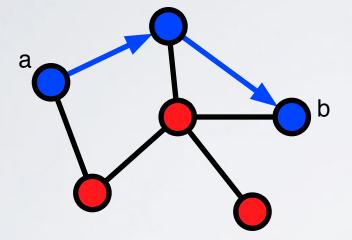
small subgraphs (of interest), which we then count

compare counts against null model (random graph model)

- efficient counting is tricky (combinatorics + graph isomorphism)
- choice of null model key
- lots of work in this area, mainly in molecular biology and neuroscience

• see

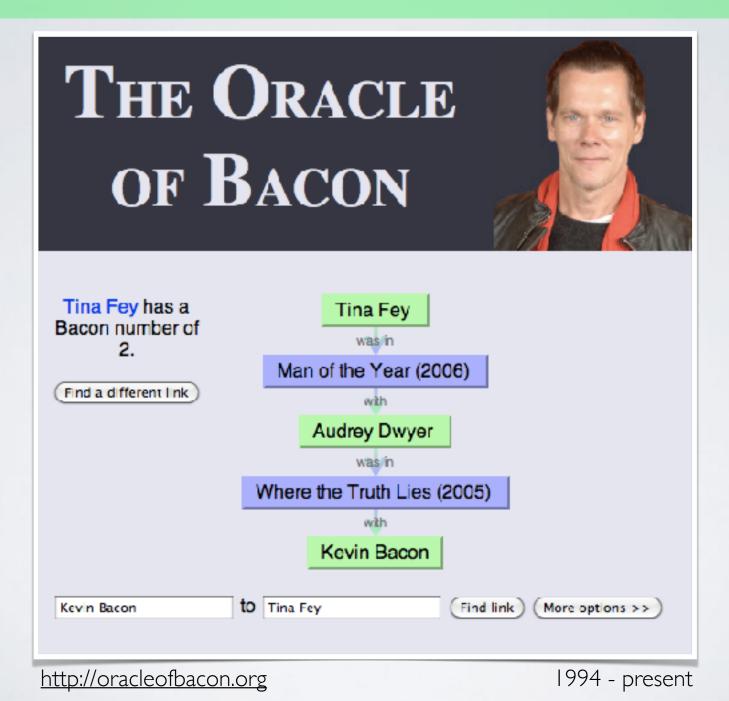
Sporns and Kotter, *PLoS Biol.* **2**, e369 (2004) Matias et al., *REVSTAT* **4**, 31-51 (2006) Wong et al., Brief. in Bioinfo. **13**, 202-215 (2011)



path:

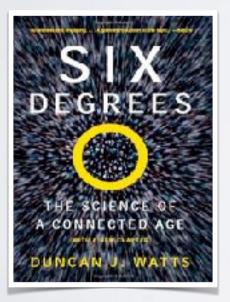
number of "hops" between two nodes

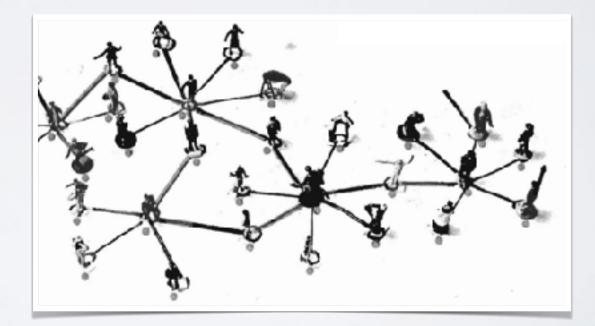
$$\ell_{a \to b} = 2$$

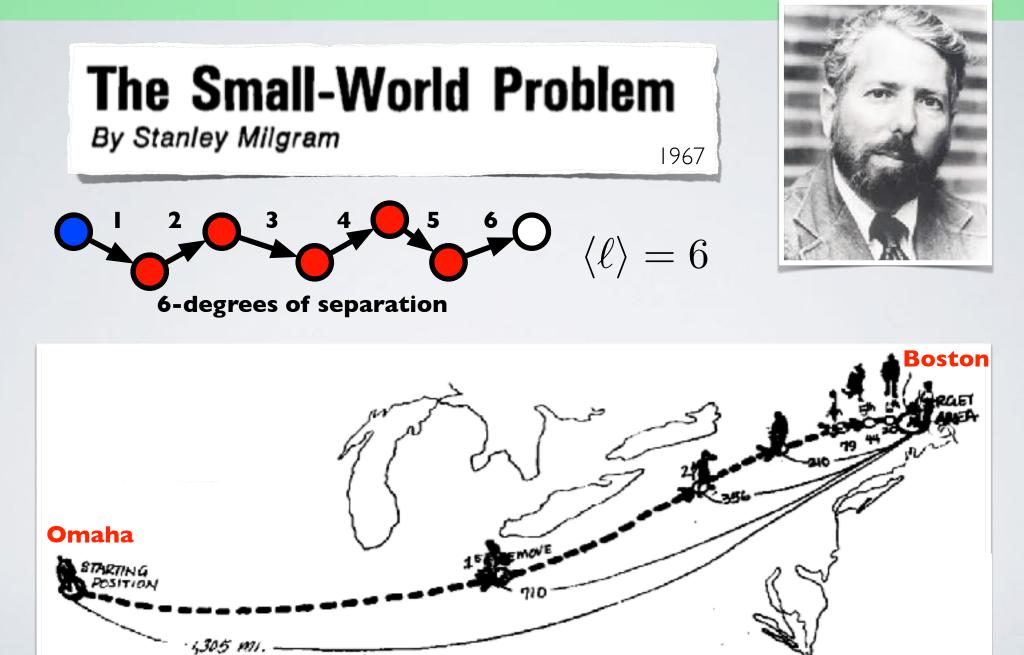


The Small-World Problem

By Stanley Milgram

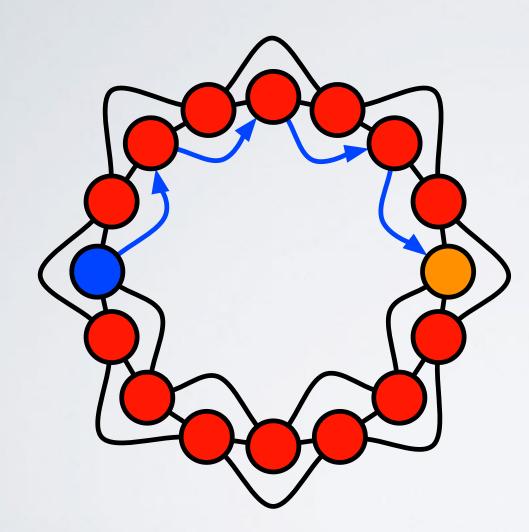






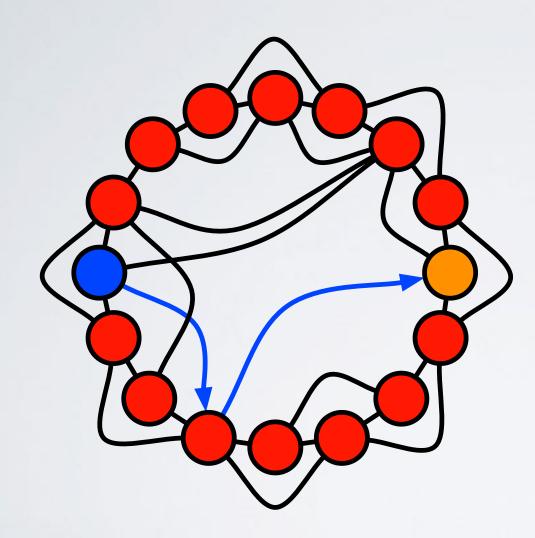
Collective dynamics of 'small-world' networks

Duncan J. Watts* & Steven H. Strogatz



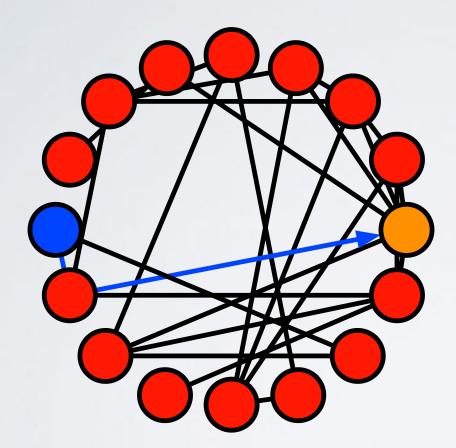
all links "local"

- most nodes far away
- high "clustering"



most links "local" some links random

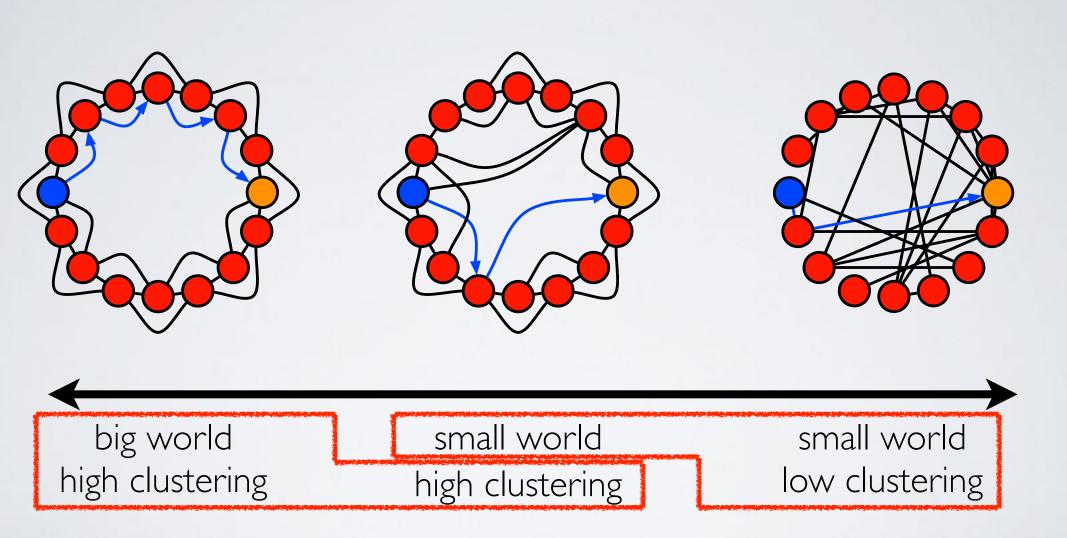
- most nodes near
- high "clustering"
- short paths can be found



all links random

- Erdos-Renyi graph
- most nodes near
- short paths hard to find
- no "clustering"

it's a small world after all



it's a small world after all

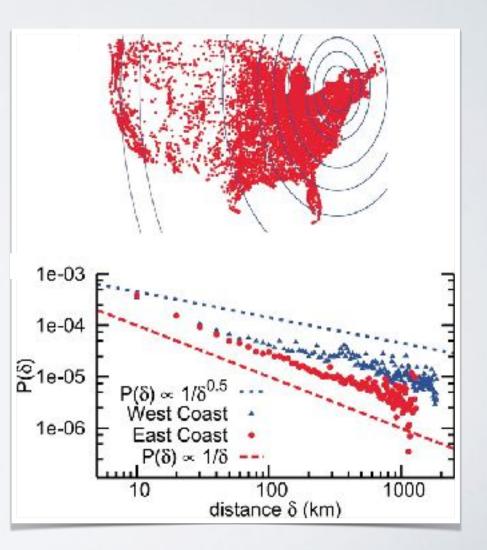
Geographic routing in social networks

2005

David Liben-Nowell*^{†‡5}, Jasmine Novak[†], Ravi Kumar^{††}, Prabhakar Raghavan¹¹, and Andrew Tomkins^{††}

495,836 geo-located users

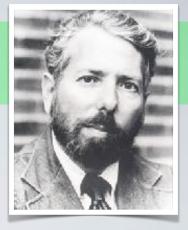
- most links ''local''
- remaining links span all scales
- high clustering
- small ''diameter''



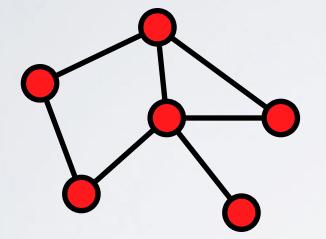
- path = sequence of edges $a \rightarrow \cdots \rightarrow b$
- many short paths = "small world"
- social world is surprisingly small, yet highly "clustered" (many locally dense groups)

open questions:

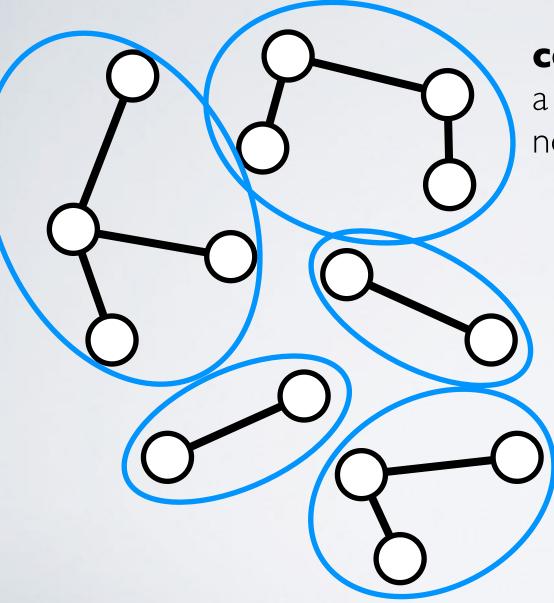
- how do big social networks self-organize?
- what processes shrink big worlds?
- social information filtering



components



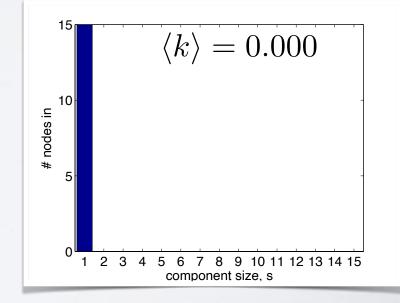
network terminology

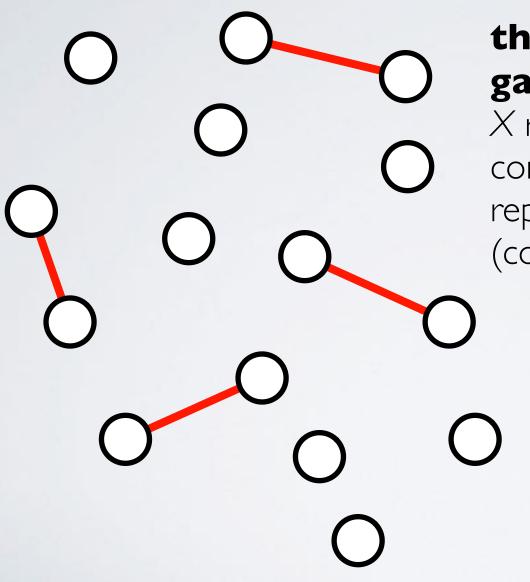


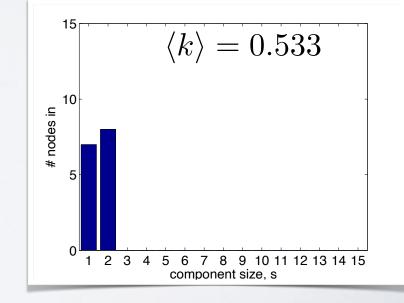
component: a group of connected

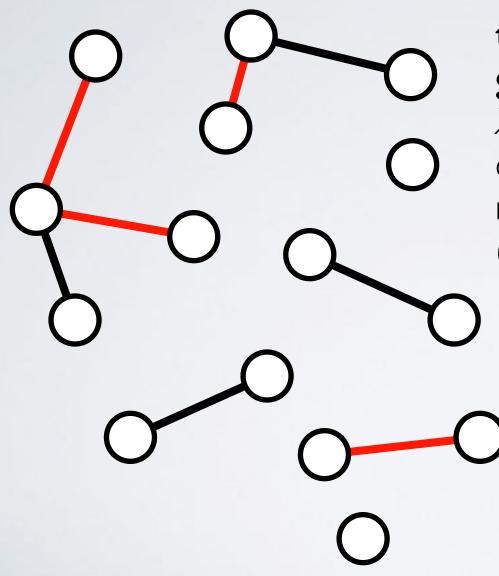
nodes

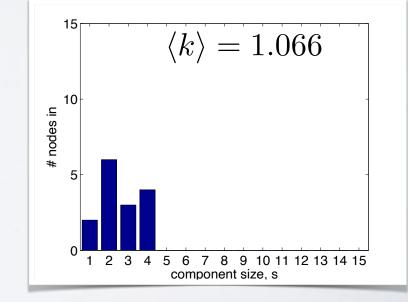
the percolationgame:chooseX random pairsconnect themrepeat(count components)

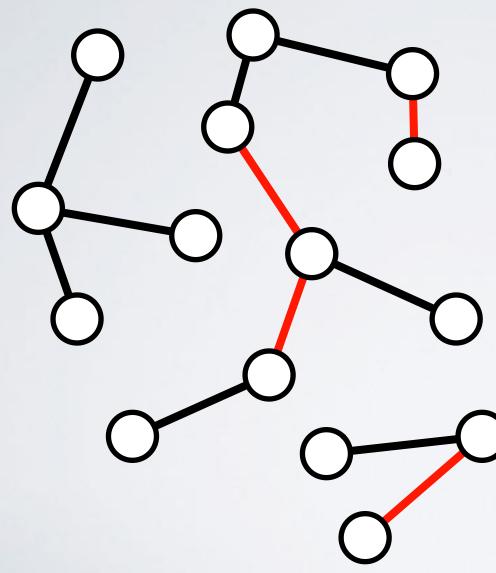


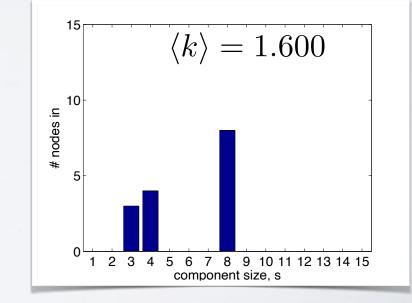


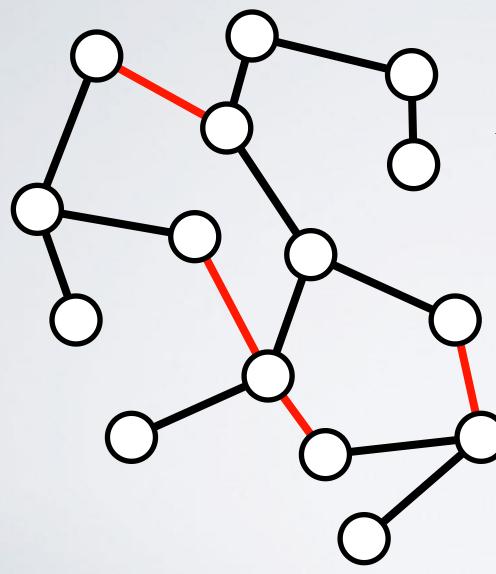


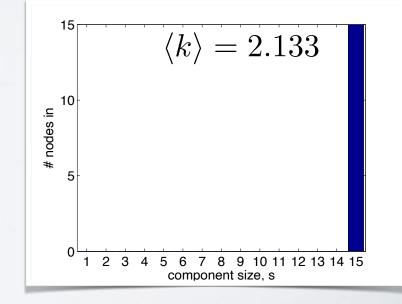


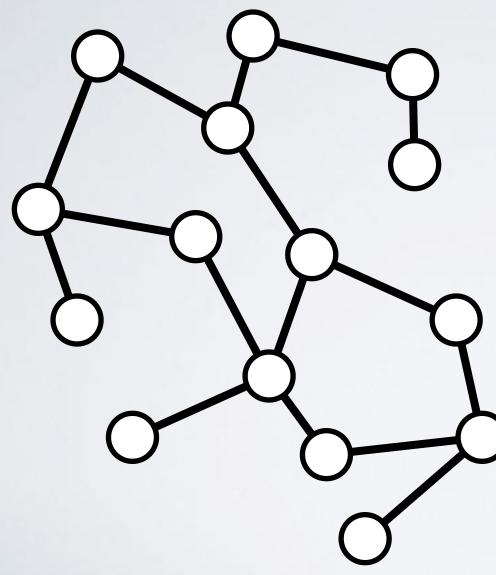


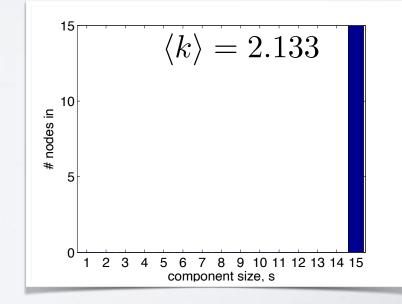






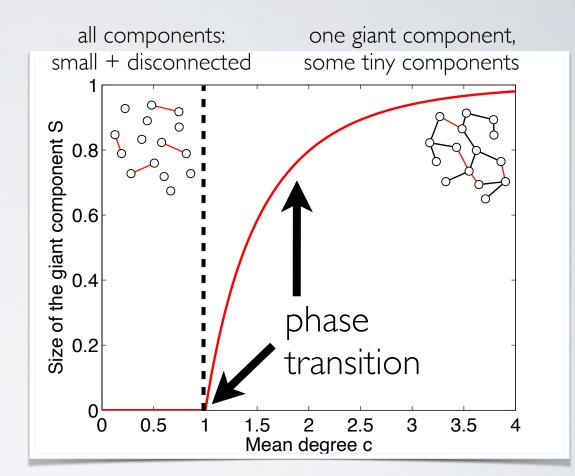


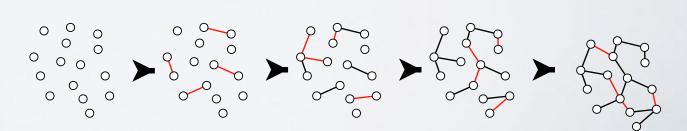




the "giant" component

- add edges randomly
- at first, components are small and disconnected
- at critical value, these components begin linking
- beyond, all nodes in single "giant" component





- component = connected group
- component dynamics are independent (no information flow)
- *phase transition*: sudden emergence of new behavior (giant component)

open questions:

- other network properties + phase transitions
- adaptive wiring
- local vs. global connectivity rules

