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@]J University of Colorado Boulder

Network Analysis and Modeling
Instructor: Aaron Clauset or Daniel B. Larremore

This graduate-level course will examine modern
techniques for analyzing and modeling the structure and
dynamics of complex networks.The focus will be on
statistical algorithms and methods, and both lectures
and assignments will emphasize model interpretability
and understanding the processes that generate real
data.Applications will be drawn from computational
biology and computational social science. No biological
or social science training is required. (Note: this is not a
scientific computing course, but there will be plenty of
computing for science.)

Full lectures notes online (~150 pages in PDF)

https://aaronclauset.github.io/courses/5352/

@ University of Colorado Boulder

Biological Networks
Instructor: Aaron Clauset

This undergraduate-level course examines the
computational representation and analysis of biological
phenomena through the structure and dynamics of
networks, from molecules to species. Attention focuses
on algorithms for clustering network structures,
predicting missing information, modeling flows,
regulation, and spreading-process dynamics, examining
the evolution of network structure, and developing
intuition for how network structure and dynamics
relate to biological phenomena.

Full lectures notes online (~150 pages in PDF)

https://aaronclauset.github.io/courses/3352/
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Software

R

Python
Matlab

NetworkX [python]
igraph [python, R, c++]
graph-tool [python, c++]
Graphlab [python, c++]

Standalone editors

UCI-Net

NodeXL

Gephi

Pajek

Network Workbench

Cytoscape

yEd graph editor
Graphviz

Network data sets

Colorado Index of Complex Networks
icon.colorado.edu
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http://www.r-project.org
https://www.python.org
http://networkx.lanl.gov/index.html
https://igraph.org
http://graph-tool.skewed.de
http://graphlab.com
https://sites.google.com/site/ucinetsoftware/home
http://nodexl.codeplex.com
https://gephi.org
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://nwb.cns.iu.edu
http://www.cytoscape.org
http://www.yworks.com/en/products_yed_about.html
http://www.graphviz.org
http://icon.colorado.edu
http://icon.colorado.edu

|. defining a network

2. describing a network

3. null models and statistical inference for networks



generative models for complex networks

* define a parametric probability distribution over networks Pr(G' | 9)
* generation : given 0, draw G from this distribution

* inference : given G, choose 0 that makes G likely

generation

inference



inference

general form

Pr(G | 0) = HPr Ai; | 6)

edge generation function

o

assumptions about “'structure” go into Pr(Aij ‘ 9)

n—oo

consistency lim Pr (é + 9) =
requires that edges be conditionally independent ™

3 main classes of these models

* Shalizi & Rinaldo, Annals of Statistics 41, 508-535 (2013)



https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498414/

generation

generative models for complex networks ..

| Pr(G0) |  G=(V, B),
B N~ T T

inference

|. Random graph models (unstructured)
* edge density (Erdds-Rény)

edges are iid Pr(4;;) =p
"homogeneous" random graphs

* degree-based (Chung-Lu & configuration)

edges independent, conditioned on degree Pr(A;;) o< k;k;
"heterogeneous” random graphs

(k) = 0.5 (k) = 1.0

s
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generative models for complex networks .. <
L Pr(G0) |  G=(V.B)!
B D N

inference

2. Stochastic block models (community structure)

* k groups of nodes: Pr(A;; | M, z) depends only on the
types z;, z; of the pair 1, j

* M is a mixing matrix : Pr(i — j) = M, .

[this is community structure]

* first formalized in Holland et al., Social Networks 5, [09—137 (1983)



https://www.sciencedirect.com/science/article/pii/0378873383900217

generative models for complex networks ...

| Pr(G[0) |  G=(V,B)]
B N~ T T

3. Latent space models (random geometric graphs)

* nodes have position in latent space z; € S

e Pr(A;; |d(wi,x;)) depends on distance d(x;,x;) of
the pair 7,7

Pr(A;;)
o

d(l’i,iﬁj)

* formalized in Hoff et al.,]. Amer. Stat. Assoc. 97, 10901098 (2002)



https://amstat.tandfonline.com/doi/abs/10.1198/016214502388618906

what patterns should we expect?

feature real networks

degree
v distribution

clustering
coefficient

diameter

I o b

large-scale
structure




what patterns should we expect?

feature real networks
WV degree heavy tailed
distribution Y
A clustering social: higher
coefficient non-social: lower
& diameter small, like O(In n)
large-scale communities, dense core,
$o<d | |
structure hierarchies, etc.




Erdos-Renyi random graphs

denoted G(n,p)
where edges are iid Pr(A4;;) =p =

mean degree
C

n—1

comments:

* highly unredlistic model (all edges iid)

 but, useful for building inturtion & doing math
* the most well-studied random graph model
* warm up for more realistic models

* Erdds & Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17-61 (1960)



degree distribution

mean degree: (k) =c=(n—1)p

Ck

degree distribution: Pr(k) = e_cy } Poisson distribution

0.4 :
—O—mean degree, ¢ = 1

—O—mean degree, ¢ = 3|
mean degree, c =8
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degree distribution

mean degree: (k) =c=(n—1)p
Ck
degree distribution: Pr(k) = e_cy Poisson distribution

3 X #triangles vt
#connected triples o

clustering coefficient: C =

_(g)pg_ S aes 1
BEGTE Ra

asymptotically,
zero clustering



degree distribution

mean degree: (k) =c=(n—1)p

k
C . I
degree distribution: Pr(k) = e_cy } Poisson distribution
clustering coefficient: C = O(n_l)} asymptotically, zero

diameter: G(n,p) is locally tree-like
mean number of vertices within s steps is ¢”
all nvertices within £ steps

thus, diameteris £ = O(Inn)

—

a "small" world

* this argument can be made more formal, but yields the same asymptotic result



examples of ER random graphs

1000

n=

500

n=

100

n=

50

10

>

MNANANNNSN S

VVITINIAANANSZINS TN
NI 7T
3099908000V N800 PHRRRRVRRAL

AR A
REERERERA RN

A AN
TN

ALY

Py

—

SANAASNNSININS
S RVATIRR AR VAN

mﬁ////géma
O

AN

SN

VAN oo

VNI

ARRN

O/O

NI
~

AN

A

3NN

AVJAVAVPPPANIVAVARRARN I

N LALLM U2 2N T
I, .wfzf,uaa
LA
IV AN
NSNS S
S U

FRGLESIRTIN

NI

A

L

/
N

\

AN

[
Q

G0

0'1=2

0¢c=>

99.39p ueaw 3uiseaJdul




how are we doing?

feature G(n,p) real networks
degree . .
\'s dis%ribution Poisson heavy tailed
A clusterlmg O(n™) SOC|aI:lh|gher
coefficient non-social: lower
¢ diameter O(Inn) small
e ol large-scale one commlunities,.dense
structure core, hierarchies, etc.




degree-based random graphs

configuration model : a random graph conditioned on having the
specified degree sequence {k1, ko, ..., kn}

kik;

2m

Pr(i — j) =

* Fosdick et al. SIAM Review 60, 315-355 (2018)
* Chung & Lu, Ann. Comb. 6, [25-145 (2002) specifies a model that produces a simple graph with a given degree sequence in expectation



https://epubs.siam.org/doi/abs/10.1137/16M1087175
https://link.springer.com/article/10.1007/PL00012580

degree-based random graphs

configuration model : a random graph conditioned on having the
specified degree sequence {k1, ko, ..., kn}

kik;

Pr(i — j) = e

double-edge swap algorithm:*

, T
start with a graph G
choose {(u, v), (x,y) } uniformly - ~ 4
rearrange to A or B © © N v
repeat until convergence
T Y
degree preserving - / B O\
record a G every 2m \o
\ v

* we use the MCMC from Fosdick et al. SIAM Review (2018) [covers technical details]
* we choose sampling gap and convergence time via Dutta et al. Preprint (2022)



https://epubs.siam.org/doi/abs/10.1137/16M1087175
https://arxiv.org/abs/2105.12120

degree-based random graphs

configuration model : a random graph conditioned on having the
specified degree sequence {k1, ko, ..., kn}

3 X #triangles vat
#connected triples o

Y (SRR L0)
n (k)3 _kO( J)

Y

clustering coefficient: C' =

asymptotically,
zero clustering



degree-based random graphs

configuration model : a random graph conditioned on having the
specified degree sequence {k1, ko, ..., kn}

clustering coefficient: C = O(n™ 1) } asymptotically, zero

diameter: also locally tree-like (if variance of degrees is finite)

following similar argument as ER graphs ¢ =O(Inn)

7

—

a "small" world



degree-based random graphs

the standard null model for empirical patterns

defines a probability distribution Pr(G | k)

e.g. from an empirical G

if f(Go)is "typical" within Pr(f(G) | E) or a preferred Pr(k)

then we say that k "explains" f(Go)

* when a Pr(k) is drawn from a power-law distribution, we call these "power-law random graphs", which are a popular model for mathematical calculations



degree-based random graphs

the standard null model for empirical patterns

[
[
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(randomized)



degree-based random graphs

the standard null model for empirical patterns
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10 Reference distribution
0.101
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* null distribution from 1076 configuration models. what the configuration model gets wrong is the community structure. most everything else is well-explained by the degree structure alone



Difference in Harmonic Centrality

degree-based random graphs

the standard null model for empirical patterns
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how are we doing?

feature G(n,p) configuration real networks
degree . . .
e P fi h |
\'s distribution 0ISsoN specified eavy tailed
4 clustering O(n_l) O(n_l) social: higher
coefficient non-social: lower
¢ diameter O(Inn) O(Inn) small
. cale communities, dense
ool 5 none none core, hierarchies,
structure

etc.



stochastic block models

 each vertex ¢ has type z; € {1,...,k} (k vertex types or groups)
* stochastic block matrix M of group-level connection probabilities

* probability that ¢, jy are connected = M, .

community = vertices with same pattern of inter-community connections

mixing matrix M




stochastic block models
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stochastic block models

likelihood function

the probability of G given labeling z and block matrix M




stochastic block models

likelihood function

the probability of G given labeling z and block matrix M

PI’ G|Z M H ]\4,2“2j H (1_MZZ,ZJ)

(2,5)€E (2,0)¢E

HMGTS = M) (Bernoulli edges)

Bernoulli random graph O
with parameter M,




stochastic block models

the most general SBM

Pr(A|z,0) = H f(Aij | HR(Zi:zj))
1,J

A;; :value of adjacency Binomial = simple graphs
. _ _ Poisson = multi-graphs
R :partition of adjacencies Normal = weighted graphs

etc.

f :probability function

0.« 1 pattern for a-type adjacencies




many stochastic block modeils

stochastic block models
k types of vertices, Pr(A;; | M, z) depends only on node types z;, 2;
originally invented by sociologists [Holland, Laskey, Leinhardt 1983]

many, many flavors, including
binomial SBM [Holland et al. 1983, Wang & Wong 1987]
simple assortative SBM [Hofman & Wiggins 2008]
mixed-membership SBM [Airoldi et al. 2008]
hierarchical SBM [Clauset et al. 2006.2008, Peixoto 2014]
fractal SBM [Leskovec et al. 2005]
infinite relational model [Kemp et al. 2006]

degree-corrected SBM [Karrer & Newman 201 1]

SBM + topic models [Ball et al. 201 1]

SBM + vertex covariates [Mariadassou et al. 2010, Newman & Clauset 2016]
SBM + edge weights [Aicher et al. 20132014, Peixoto 2015]

bipartite SBM [Larremore et al. 2014]

multilayer SBM [Peixoto 2015, Valles-Catata et al. 2016]

and many others



http://jmlr.csail.mit.edu/papers/v9/airoldi08a.html
https://arxiv.org/abs/0811.0484
https://arxiv.org/abs/1310.4377
https://arxiv.org/abs/1104.3590
https://arxiv.org/abs/1507.04001
https://arxiv.org/abs/1404.0431
https://arxiv.org/abs/1504.02381
https://arxiv.org/abs/1403.2933

onhe important stochastic block model

degree-corrected SBM (f = Poisson)

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)



https://arxiv.org/abs/1008.3926

onhe important stochastic block model

degree-corrected SBM (f = Poisson)
key assumption Pr(i — j) = 6;0;w., ..
stochastic block matrix Gl

)

(degree) propensity of node 6,

likelihood:
A
Pr(A | 2,0,u) = T Gilierz) 0,0
R 17 *
1<)
A k; . Z
where 92 — W 5 Wrs = MMypg = Aijcszi,razj,s
Zj JY%i,2; ij
7 -~ J
—~ ~
fraction of ¢’s group’s stubs on ¢ total number of edges between 7 and s

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)



https://arxiv.org/abs/1008.3926

onhe important stochastic block model

comparing SBM vs. DC-SBM : Zachary karate club

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)



https://arxiv.org/abs/1008.3926

onhe important stochastic block model

comparing SBM vs. DC-SBM : Zachary karate club

SBM DC-SBM
leader/follower division assortative group division

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)



https://arxiv.org/abs/1008.3926

one important stochastic block model

comparing SBM vs. DC-SBM : Zachary karate club

SBM DC-SBM
leader/follower division assortative group division

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)



https://arxiv.org/abs/1008.3926

different models, different insights

comparing SBM vs. DC-SBM : Zachary karate club
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log likelihood

-230 J

SBM DC-SBM
leader/follower division assortative group division

* Peel et al., Science Advances 3, e1602548 (2017)



https://advances.sciencemag.org/content/3/5/e1602548.full

different models, different insights

comparing SBM vs. DC-SBM : Zachary karate club
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leader/follower division assortative group division

* Peel et al., Science Advances 3, e1602548 (2017)



https://advances.sciencemag.org/content/3/5/e1602548.full

stochastic block models

SBM properties

k Erdos-Renyi random graphs

each with size 1, and internal density M, ,.

joined pairwise as random bipartite graph with density M, ,
degree distribution: mixture of Poissons
diameter: O(Inn) or O(In(kn))
triangle density: low, except when M, s > 0
local structure: like a random graph

large-scale: mixtures of assortative & disassortative structure



stochastic block models

DC-SBM properties
k 'configuration model' random multi-graphs
each with size 7., internal density )/, . and propensities {0; },
joined pairwise as random bipartite graph with parameters M, ; and {0}, s
degree distribution: arbitrary ({6;})
diameter: O(Inn) or O(In(kn))
triangle density: low, except when M, s > 0
local structure: like a random multi-graph

large-scale: mixtures of assortative & disassortative structure



how are we doing?

AA

—

— v
feature G(n,p) | configuration DC SBM real networks
degree . | . .
\'s dietribLtion Poisson specified specified heavy tailed
4 clustering O(n_l) O(n_l) O(n_l) social: high
coefficient non-social: low
O diameter | O(Inn) O(Inn) O(Inn) small
- ale specified: communities,
5 none none communities, dense core,
structure

hierarchies, etc.

hierarchies, etc.



how are we doing?

AA

-

— v
feature G(n,p) | configuration DC SBM real networks
\'s jiiiiebition Poisson specified specified heavy tailed
clustering 1 1 1 social: high
< coefficient gy gy S non-social: low
O diameter | O(Inn) O(Inn) O(Inn) small
- ale specified: communities,
Stricture none none communities, dense core,

hierarchies, etc.

hierarchies, etc.



what patterns do real networks exhibit?

degree distributions:

heavy-tailed, with enormous diversity across networks and domains

10"

PriK

109 10! 102 103 10 105
Degree, k

* data from 100 networks from 4 scientific domains, from Index of Complex Networks (ICON); next 2 slides are for a corpus of 410 networks; Ray & Clauset, in prep (2019)



mean degree (are networks sparse?):

@ O(n®), social networks generally far more dense than other types
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* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)




mean geodesic distance (also, diameter):

a O(ln n) but with different coefficients for different domains
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* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)

102 10  10°
Number of nodes (nJ

104 108



clustering coefficient:

) O(n_l) , social networks have 5 — 10X more triangles at a given
scale 1, but all networks scale down
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* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)
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Degree Assortalivity ()

degree assortativity

Increases with scale — esp. in social networks
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what patterns do real networks exhibit?

how much of clustering coefficient is due to degree structure!

10* 1
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what patterns do real networks exhibit?

how much of clustering coefficient is due to degree structure!

& social networks' higher C' is partly explained by their degree distributions
all domains exhibit similar triangle-enrichment across scales (a bit more for bio)

10* 1
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10° 1 .
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Number of nodeg (n? - Number of nodes (n) Number of nodes (n)
* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)



how are we doing?

AA

7'/ ® .
-

-
-
3 - a

— = ~
feature G(n,p) | configuration DC SBM real networks
degree . | . .
4 distribution Poisson specified specified heavy tailed
clustering 1 - 1 1
< coefficient Ofn™) S At o)
& diameter | O(Inn) O(Inn) O(Inn) O(Inn)
e specified: communities,
5 none none communities, dense core,
structure

hierarchies, etc.

hierarchies, etc.



parting thoughts on networks

* networks are cool!



parting thoughts on networks

* networks are cool!
but also complicated objects = enormous structural diversity
many ways to describe a network’s structure

* null models & statistical inference
among most powerful tools for describing network structure
highly flexible, scalable, useful
auxiliary data (weights, attributes, time)
applications abound [new ideas often come from these]

* structure + dynamics = function
how does structure constrain dynamics, robustness, etc.
to what degree does structure = function?



analyzing networks

6 major approaches

exploratory data analysis: count & compare all the things (degree
distributions, centrality scores, community detection, etc.)

simple regressions: convert network structure into node-level
features, and do traditional explanatory modeling

null models: use some kind of random graph to identify non-random
patterns as deviations from the null

mechanisms / simulations: explain structural or dynamical patterns as
caused by specific process

. predictive models: fit parametric model of network structure & use it

to predict missing or future data (edges, labels, etc.)

network experiments: manipulate structure and measure node-level
or graph-level behavior as function of changes



end of lecture 3

networks are




giant component (Erdos-Renyi graph)

let u be fraction of vertices not Iin giant component

for ¢ not to be in the giant component, then for every

J
|. 7 Is not connected to 7, , ‘
or

2. 1 connectsto j,and J Is
not part of the giant
component

.

- - - - - - - ) - - ------------

giant component



giant component (Erdos-Renyi graph)

let u be fraction of vertices not Iin giant component

for ¢ not to be in the giant component, then for every

J
|. with probability 1 — p , ‘

2. with probability pu

.

- - - - - - - ) - - ------------

giant component



giant component (Erdos-Renyi graph)

total probabllity that 7 not in giant component via
any of the n — 1 choices of 3:

u=(1—-p+pu)"t=1|1-

eeeee ber: p=c¢/(n—1)



giant component (Erdos-Renyi graph)

total probabllity that 7 not in giant component via
any of the n — 1 choices of 3:

C

n—1

u=(1—p+pu)"!= [1— (1—u)]n1

taking logs of both sides, and approximating;

n—1“_“ﬂ
(1-u)

C

Inu=(n—1)In [1—

~—(n—1) c

n—1
= —c(1 — u)

eeeee beriln(l+z)~z if 2 <1



giant component (Erdos-Renyi graph)

total probabllity that ¢ not in giant component via
any of the n — 1 choices of 3:

- e—c(l—u)

and the fraction of vertices in the giant component Is
S ==

eliminating u for S' yields the transcendental equation

S — 1 - e_ cS [first given by Erdos and Renyi in 1959]



giant component

size of the giant component: S =1 — e ¢°

all components: one giant component,
small + disconnected some tiny components
1 . y
@) O\o :
@) o '
7 boow
€08 “o°
o © '
C 1
O 1
g— ;
o 0.6 5
O 1
c ;
8 -
D4l ; ]
o 04 : phase
S : transition
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@ :
O ] ] ]
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Mean degree ¢




citation networks

example of a dynamic, growing network model
example of a network mechanistic model
ample data

pleasing narcissistic qualities

long history of study

generally well understood



citation networks

Networks of Scientific Papers

The pattern of bibliographic references indicates

the nature of the scientific research front.

| 965 Derek J. de Solla Price

B e - R ——

Price’s model:

* papers are published continually [srowing network]

* each paper has bibliography of length ¢ [mean out degree]

* new papers cite previously published only [directed acyclic graph]
e attachment mechanism:

so long as Pr(c) has finite variance, the model is well defined



citation networks

Networks of Scientific Papers

The pattern of bibliographic references indicates

the nature of the scientific research front.

| 965 Derek J. de Solla Price

as— S — S—

Price’s model:

* papers are published continually [srowing network]

* each paper has bibliography of length ¢ [mean out degree]

* new papers cite previously published only [directed acyclic graph]
e attachment mechanism:

p(j cites some paper i) x k; + a

\

preferential uniform
attachment attachment

preferential attachment = cumulative advantage = the Matthew effect so long as Pr(c) has finite variance, the model is well defined



preferential attachment networks

!

* this is a scale-free network, because the term “scale free" refers specifically to a graph with a power-law degree distribution (or tail), which this model produces



preferential attachment networks

(e}
0\0\ 0
o ot

* this is a scale-free network, because the term “scale free” refers specifically to a graph with a power-law degree distribution (or tail), which this model produces



degree distribution

exactly solvable in the limit [originally by Simon 1955]

B(k + a,a)
= =
2 B(a,a — 1) - o

see Section 4.1 in Networks:An Introduction



degree distribution

exactly solvable in the limit [originally by Simon 1955]
B(k + a,a)
= a=24+a/c
2 B(a,a — 1) /
recall that

B(a,b) =T'(a)L'(b)/T(a +b)
B(a,b) ~a™®  (in the tail)

see Section 4.1 in Networks:An Introduction



degree distribution

exactly solvable in the limit [originally by Simon 1955]
B(k + a,a)
= a=24+a/c
2 B(a,a — 1) /
recall that

B(a,b) =T'(a)l'(b)/T'(a + b)
B(a,b) ~a™®  (in the tail)
thus, distribution of citations

P ~ (]{7 - a)_o‘

see Section 4.1 in Networks:An Introduction



degree distribution

The first-mover advantage in scientific publication

M. E. J. NEWMAN(®) 2009
pr ~ (k+a)”“

* 240/ network science 5 | g
papers = o, .
e from 1998-2008 g N i
* fitted parameters 5 ' )
o = 2.28 E \\ ]
E 0.01 .
a = 6.38 z V0 N 5
o -
O \ -
2 T
S 0.001 \-
g 11 IIIIIII 11 IIIIIII 11 IIIIIII 1 I:

5 1 10 100 1000

Citations k




the first-mover effect

The first-mover advantage in scientific publication

M. E. J. NEWMAN(®) 2009
B

* let ?; denote time that paper ¢ was published
* new papers only cite older papers
e thus, first-mover effect: k; o< 1/t;

* Price’'s model fully specified by @ and a
* Idea
|. estimate them from total crtation distribution
2. derive predictions about citation counts vs. age of paper



the first-mover effect

average citations (k) vs. time of publication ¢

no free parameters

1 1 1 1 I 1 1 1 1 10()
|| network theory papers i
- . -1 50
| Price’s model |
0

: 1
Time t

oldest newest
papers papers

Average citations Y (7)



the first-mover effect

given k citations at time ¢ = 1, probability of publication time ¢;

no free parameters
Price’s model

3 T T T 1

[\
| LI

Probability density
I

ke ll,2] k € [6,10]



checking the model

Citation Statistics from 2004
110 Years of Physical Review

Sidney Redner

| 10 years of data (July 1893 - June 2003)

3.1 millions citations
330,000 papers with at least one crtation

key question: is attachment function o< k; ?



checking the model

key question: is attachment function o k; ?

pretty much.

caveat:
* ensemble only
(not individual papers)

200

150

100

attachment rate A,

50

50

200 400 600 800
number of citations k




citation networks

networks of scientific publications

summary of features

* Price’'s model: preferential + uniform attachment
e excellent model of citation networks
* also good model of WWW

* avariation (duplication-mutation) good for gene networks

* not a great model of many other networks
* especially social and spatial networks
* ignores constraints (cost of edges)

* many additional mathematical, empirical results
* see Redner’s, Newman'’s, Fortunato's work



