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https://aaronclauset.github.io/courses/5352/

Network Analysis and Modeling

Instructor: Aaron Clauset or Daniel B. Larremore

This graduate-level course will examine modern 
techniques for analyzing and modeling the structure and 
dynamics of complex networks. The focus will be on 
statistical algorithms and methods, and both lectures 
and assignments will emphasize model interpretability 
and understanding the processes that generate real 
data. Applications will be drawn from computational 
biology and computational social science. No biological 
or social science training is required. (Note: this is not a 
scientific computing course, but there will be plenty of 
computing for science.)

Full lectures notes online (~150 pages in PDF)

https://aaronclauset.github.io/courses/3352/

Biological Networks

Instructor: Aaron Clauset

This undergraduate-level course examines the 
computational representation and analysis of biological 
phenomena through the structure and dynamics of 
networks, from molecules to species. Attention focuses 
on algorithms for clustering network structures, 
predicting missing information, modeling flows, 
regulation, and spreading-process dynamics, examining 
the evolution of network structure, and developing 
intuition for how network structure and dynamics 
relate to biological phenomena. 

Full lectures notes online (~150 pages in PDF)

http://www.apple.com
https://aaronclauset.github.io/courses/5352/
http://www.apple.com
https://aaronclauset.github.io/courses/5352/
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Software

R
Python
Matlab
NetworkX [python]
igraph [python, R, c++]
graph-tool [python, c++]
GraphLab [python, c++]

Standalone editors 

UCI-Net
NodeXL
Gephi
Pajek
Network Workbench
Cytoscape
yEd graph editor
Graphviz

Network data sets

Colorado Index of Complex Networks
icon.colorado.edu

http://www.r-project.org
https://www.python.org
http://networkx.lanl.gov/index.html
https://igraph.org
http://graph-tool.skewed.de
http://graphlab.com
https://sites.google.com/site/ucinetsoftware/home
http://nodexl.codeplex.com
https://gephi.org
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
http://nwb.cns.iu.edu
http://www.cytoscape.org
http://www.yworks.com/en/products_yed_about.html
http://www.graphviz.org
http://icon.colorado.edu
http://icon.colorado.edu


1. defining a network
2. describing a network
3. null models and statistical inference for networks



• define a parametric probability distribution over networks
• generation : given    ,  draw     from this distribution
• inference : given    ,  choose     that makes     likely

generation

inference

model

G=(V,E)

data

Pr(G | θ)

Pr(G | ✓)
✓ G

G ✓ G

generative models for complex networks



assumptions about “structure” go into

consistency

requires that edges be conditionally independent

3 main classes of these models

generative models for complex networks

general form

lim
n!1

Pr
⇣
✓̂ 6= ✓

⌘
= 0

edge generation function

generation

inference

model

G=(V,E)

data

Pr(G | θ)

Pr(Aij | ✓)

Pr(G | ✓) =
Y

ij

Pr(Aij | ✓)

* Shalizi & Rinaldo, Annals of Statistics 41, 508–535 (2013)

*

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498414/


generative models for complex networks

1. Random graph models (unstructured)

• edge density (Erdös-Rényi)
edges are iid                                                        
"homogeneous" random graphs

• degree-based (Chung-Lu & configuration)
edges independent, conditioned on degree            
"heterogeneous" random graphs

Pr(Aij) = p
<latexit sha1_base64="qxzlDUwZf3x8cXix/xdt8wygF+k=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1iEuilJFRRBqLhxWcE+oA1hMp20YyeTMDMRauiXuHGhiFs/xZ1/4/Sx0NYDFw7n3Mu99wQJZ0o7zreVW1ldW9/Ibxa2tnd2i/beflPFqSS0QWIey3aAFeVM0IZmmtN2IimOAk5bwfBm4rceqVQsFvd6lFAvwn3BQkawNpJvF7t1Wb72M/YwPkFXKPHtklNxpkDLxJ2TEsxR9+2vbi8maUSFJhwr1XGdRHsZlpoRTseFbqpogskQ92nHUIEjqrxsevgYHRulh8JYmhIaTdXfExmOlBpFgemMsB6oRW8i/ud1Uh1eeBkTSaqpILNFYcqRjtEkBdRjkhLNR4ZgIpm5FZEBlphok1XBhOAuvrxMmtWKe1qp3p2VapfzOPJwCEdQBhfOoQa3UIcGEEjhGV7hzXqyXqx362PWmrPmMwfwB9bnDw2fkgQ=</latexit>
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Pr(Aij) / kikj
<latexit sha1_base64="8S7DCz9VmN+dn/xXD7LG0B1lshU=">AAACBHicbVDLSgMxFM34rPU16rKbYBHqpsxUQXFVceOygn1AZxgyaaZNm8mEJCOUoQs3/oobF4q49SPc+Tem7Sy09cCFwzn3kpwTCkaVdpxva2V1bX1js7BV3N7Z3du3Dw5bKkklJk2csER2QqQIo5w0NdWMdIQkKA4ZaYejm6nffiBS0YTf67Egfoz6nEYUI22kwC55DVm5DjI6nJxCT8hE6ASOAmpmGNhlp+rMAJeJm5MyyNEI7C+vl+A0JlxjhpTquo7QfoakppiRSdFLFREIj1CfdA3lKCbKz2YhJvDEKD0YJdIM13Cm/r7IUKzUOA7NZoz0QC16U/E/r5vq6NLPKBepJhzPH4pSBk3QaSOwRyXBmo0NQVhS81eIB0girE1vRVOCuxh5mbRqVfesWrs7L9ev8joKoASOQQW44ALUwS1ogCbA4BE8g1fwZj1ZL9a79TFfXbHymyPwB9bnD37bl1Y=</latexit>

generation

inference

model

G=(V,E)

data

Pr(G | θ)

hki = 0.5
<latexit sha1_base64="YKLZNXU2QnExWEDhSg5ShvYG3Eo=">AAACAHicbZDLSsNAFIYn9VbrLerChZvBIrgKSVV0IxTcuKxgL9CEMpmetEMnkzAzEUroxldx40IRtz6GO9/GaZuFtv4w8PGfczhz/jDlTGnX/bZKK6tr6xvlzcrW9s7unr1/0FJJJik0acIT2QmJAs4ENDXTHDqpBBKHHNrh6HZabz+CVCwRD3qcQhCTgWARo0Qbq2cf+ZyIAQc8wr6c0w12ncueXXUddya8DF4BVVSo0bO//H5CsxiEppwo1fXcVAc5kZpRDpOKnylICR2RAXQNChKDCvLZARN8apw+jhJpntB45v6eyEms1DgOTWdM9FAt1qbmf7VupqPrIGcizTQIOl8UZRzrBE/TwH0mgWo+NkCoZOavmA6JJFSbzComBG/x5GVo1Rzv3KndX1TrtSKOMjpGJ+gMeegK1dEdaqAmomiCntErerOerBfr3fqYt5asYuYQ/ZH1+QNaR5Tk</latexit>

hki = 1.0
<latexit sha1_base64="U8MnKTBRXzmTrQ/56h1/UwcMubs=">AAACAHicbZA9SwNBEIbn/Izx69TCwmYxCFbhLgraCAEbywjmA3JH2NtMkiV7e8funhBCGv+KjYUitv4MO/+Nm+QKTXxh4eGdGWbnjVLBtfG8b2dldW19Y7OwVdze2d3bdw8OGzrJFMM6S0SiWhHVKLjEuuFGYCtVSONIYDMa3k7rzUdUmifywYxSDGPal7zHGTXW6rjHgaCyL5AMSaDmdEP8stdxS17Zm4ksg59DCXLVOu5X0E1YFqM0TFCt276XmnBMleFM4KQYZBpTyoa0j22Lksaow/HsgAk5s06X9BJlnzRk5v6eGNNY61Ec2c6YmoFerE3N/2rtzPSuwzGXaWZQsvmiXiaIScg0DdLlCpkRIwuUKW7/StiAKsqMzaxoQ/AXT16GRqXsX5Qr95elaiWPowAncArn4MMVVOEOalAHBhN4hld4c56cF+fd+Zi3rjj5zBH8kfP5A1Q5lOA=</latexit>

hki = 2.0
<latexit sha1_base64="e4wnKCsn52maIUjis6a+5a7f5ew=">AAACAHicbZDLSsNAFIYnXmu9RV24cDNYBFchiYJuhIIblxXsBZpQJtOTduhkEmYmQgnd+CpuXCji1sdw59s4bbPQ1h8GPv5zDmfOH2WcKe2639bK6tr6xmZlq7q9s7u3bx8ctlSaSwpNmvJUdiKigDMBTc00h04mgSQRh3Y0up3W248gFUvFgx5nECZkIFjMKNHG6tnHASdiwAGPcCDndIN9x+3ZNddxZ8LL4JVQQ6UaPfsr6Kc0T0BoyolSXc/NdFgQqRnlMKkGuYKM0BEZQNegIAmosJgdMMFnxunjOJXmCY1n7u+JgiRKjZPIdCZED9VibWr+V+vmOr4OCyayXIOg80VxzrFO8TQN3GcSqOZjA4RKZv6K6ZBIQrXJrGpC8BZPXoaW73gXjn9/Wav7ZRwVdIJO0Tny0BWqozvUQE1E0QQ9o1f0Zj1ZL9a79TFvXbHKmSP0R9bnD1W/lOE=</latexit>

hki = 4.0
<latexit sha1_base64="GLDtyrQn6E0Sn+pfpPCjx8SkDkU=">AAACAHicbZDLSsNAFIYn9VbrLerChZvBIrgKSS3oRii4cVnBXqAJZTI9aYdOJmFmIpTQja/ixoUibn0Md76N0zYLbf1h4OM/53Dm/GHKmdKu+22V1tY3NrfK25Wd3b39A/vwqK2STFJo0YQnshsSBZwJaGmmOXRTCSQOOXTC8e2s3nkEqVgiHvQkhSAmQ8EiRok2Vt8+8TkRQw54jH25oBtcd9y+XXUddy68Cl4BVVSo2be//EFCsxiEppwo1fPcVAc5kZpRDtOKnylICR2TIfQMChKDCvL5AVN8bpwBjhJpntB47v6eyEms1CQOTWdM9Egt12bmf7VepqPrIGcizTQIulgUZRzrBM/SwAMmgWo+MUCoZOavmI6IJFSbzComBG/55FVo1xzv0qnd16uNWhFHGZ2iM3SBPHSFGugONVELUTRFz+gVvVlP1ov1bn0sWktWMXOM/sj6/AFYy5Tj</latexit>



generative models for complex networks

2. Stochastic block models (community structure)

•     groups of nodes:                        depends only on the 
types          of the pair 

•      is a mixing matrix :

k
<latexit sha1_base64="kBpW2Z3PaYvSRudv/tWr0IjE0ec=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoHgqePHYgq2FNpTNdtKu3WzC7kYoob/AiwdFvPqTvPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4EMwvp35D0+oNI/lvZkk6Ed0KHnIGTVWao775Ypbdecgq8TLSQVyNPrlr94gZmmE0jBBte56bmL8jCrDmcBpqZdqTCgb0yF2LZU0Qu1n80On5MwqAxLGypY0ZK7+nshopPUkCmxnRM1IL3sz8T+vm5rw2s+4TFKDki0WhakgJiazr8mAK2RGTCyhTHF7K2EjqigzNpuSDcFbfnmVtGtV76Jaa15W6jd5HEU4gVM4Bw+uoA530IAWMEB4hld4cx6dF+fd+Vi0Fpx85hj+wPn8AdFrjOs=</latexit>

Pr(Aij |M, z)
<latexit sha1_base64="9WSpzZnuM75cL0KKBNhOoUIw/Ro=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQoZSkCoqrihs3QgX7gCaEyXTSjp1MwsxEiLH+ihsXirj1Q9z5N04fC209cOFwzr3ce48fMyqVZX0buaXlldW1/HphY3Nre8fc3WvJKBGYNHHEItHxkSSMctJUVDHSiQVBoc9I2x9ejv32PRGSRvxWpTFxQ9TnNKAYKS15ZtFpiPKFl9G7kVN5dCrXlYcjzyxZVWsCuEjsGSmBGRqe+eX0IpyEhCvMkJRd24qVmyGhKGZkVHASSWKEh6hPuppyFBLpZpPjR/BQKz0YREIXV3Ci/p7IUChlGvq6M0RqIOe9sfif101UcOZmlMeJIhxPFwUJgyqC4yRgjwqCFUs1QVhQfSvEAyQQVjqvgg7Bnn95kbRqVfu4Wrs5KdXPZ3HkwT44AGVgg1NQB1egAZoAgxQ8g1fwZjwZL8a78TFtzRmzmSL4A+PzBxvzk74=</latexit>

zi, zj
<latexit sha1_base64="SYtqkujiFGn3elGTEIP3GIlauDA=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5RdFRRPBS8eK9gPaJclm2bb2Gw2JFmhXfojvHhQxKu/x5v/xrTdg7Y+GHi8N8PMvFBypo3rfjuFldW19Y3iZmlre2d3r7x/0NRJqghtkIQnqh1iTTkTtGGY4bQtFcVxyGkrHN5O/dYTVZol4sGMJPVj3BcsYgQbK7XGATsbB49BueJW3RnQMvFyUoEc9aD81e0lJI2pMIRjrTueK42fYWUY4XRS6qaaSkyGuE87lgocU+1ns3Mn6MQqPRQlypYwaKb+nshwrPUoDm1njM1AL3pT8T+vk5ro2s+YkKmhgswXRSlHJkHT31GPKUoMH1mCiWL2VkQGWGFibEIlG4K3+PIyaZ5XvYvq+f1lpXaTx1GEIziGU/DgCmpwB3VoAIEhPMMrvDnSeXHenY95a8HJZw7hD5zPHyl2j20=</latexit>

i, j
<latexit sha1_base64="6YUM5JJlv29xqw7QmvBh3XLjMvg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFBRPAS8eI5oHJCHMTmaTMbOzy0yvEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13lx9LYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3fKp4VIoXkeBkrdizWnoS970RzdTv/nEtRGResBxzLshHSgRCEbRSvfi7LFXLLlldwayTLyMlCBDrVf86vQjloRcIZPUmLbnxthNqUbBJJ8UOonhMWUjOuBtSxUNuemms1Mn5MQqfRJE2pZCMlN/T6Q0NGYc+rYzpDg0i95U/M9rJxhcdVOh4gS5YvNFQSIJRmT6N+kLzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsuVu4tS9TqLIw9HcAyn4MElVOEWalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8//JKNkw==</latexit>

M<latexit sha1_base64="WMOF+fgDazkkXnIYLFXkpqEuc50=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8OJFSMA8IFnC7KQ3GTM7u8zMCiHkC7x4UMSrn+TNv3GS7EETCxqKqm66u4JEcG1c99vJra1vbG7ltws7u3v7B8XDo6aOU8WwwWIRq3ZANQousWG4EdhOFNIoENgKRrczv/WESvNYPphxgn5EB5KHnFFjpfp9r1hyy+4cZJV4GSlBhlqv+NXtxyyNUBomqNYdz02MP6HKcCZwWuimGhPKRnSAHUsljVD7k/mhU3JmlT4JY2VLGjJXf09MaKT1OApsZ0TNUC97M/E/r5Oa8NqfcJmkBiVbLApTQUxMZl+TPlfIjBhbQpni9lbChlRRZmw2BRuCt/zyKmlWyt5FuVK/LFVvsjjycAKncA4eXEEV7qAGDWCA8Ayv8OY8Oi/Ou/OxaM052cwx/IHz+QOj84zN</latexit> Pr(i ! j) = Mzi,zj
<latexit sha1_base64="AgWrINNUH4e/tVLO+2T9xvZDAH0=">AAACAnicbVDLSsNAFJ3UV62vqCtxM1iEClKSKiiCUHDjRqhgH9CEMJlO2mknkzAzEdpQ3Pgrblwo4tavcOffOG2z0OqBgcM593LnHD9mVCrL+jJyC4tLyyv51cLa+sbmlrm905BRIjCp44hFouUjSRjlpK6oYqQVC4JCn5GmP7ia+M17IiSN+J0axsQNUZfTgGKktOSZe05NlKijItg/gpfwxktHHj0eef2xZxatsjUF/EvsjBRBhppnfjqdCCch4QozJGXbtmLlpkgoihkZF5xEkhjhAeqStqYchUS66TTCGB5qpQODSOjHFZyqPzdSFEo5DH09GSLVk/PeRPzPaycqOHdTyuNEEY5nh4KEQZ140gfsUEGwYkNNEBZU/xXiHhIIK91aQZdgz0f+SxqVsn1SrtyeFqsXWR15sA8OQAnY4AxUwTWogTrA4AE8gRfwajwaz8ab8T4bzRnZzi74BePjG0/UlhQ=</latexit>
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[this is community structure]

* first formalized in Holland et al., Social Networks 5, 109–137 (1983)

generation

inference

model

G=(V,E)

data

Pr(G | θ)

https://www.sciencedirect.com/science/article/pii/0378873383900217


generative models for complex networks

3. Latent space models (random geometric graphs)

• nodes have position in latent space
•                              depends on distance                of    

the pair 

* formalized in Hoff et al., J. Amer. Stat. Assoc. 97, 1090–1098 (2002)

i, j
<latexit sha1_base64="6YUM5JJlv29xqw7QmvBh3XLjMvg=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgQcJuFBRPAS8eI5oHJCHMTmaTMbOzy0yvEJZ8ghcPinj1i7z5N06SPWhiQUNR1U13lx9LYdB1v53cyura+kZ+s7C1vbO7V9w/aJgo0YzXWSQj3fKp4VIoXkeBkrdizWnoS970RzdTv/nEtRGResBxzLshHSgRCEbRSvfi7LFXLLlldwayTLyMlCBDrVf86vQjloRcIZPUmLbnxthNqUbBJJ8UOonhMWUjOuBtSxUNuemms1Mn5MQqfRJE2pZCMlN/T6Q0NGYc+rYzpDg0i95U/M9rJxhcdVOh4gS5YvNFQSIJRmT6N+kLzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsuVu4tS9TqLIw9HcAyn4MElVOEWalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8//JKNkw==</latexit>

Pr(Aij | d(xi, xj))
<latexit sha1_base64="mz0YCfv/xOEYOCg22goJde/snJ4=">AAACA3icbVDLSsNAFJ34rPUVdaebYBFaKCWpguKq4sZlBfuAJoTJZNJOO5mEmYm0xIIbf8WNC0Xc+hPu/BunbRbaeuDC4Zx7ufceL6ZESNP81paWV1bX1nMb+c2t7Z1dfW+/KaKEI9xAEY1424MCU8JwQxJJcTvmGIYexS1vcD3xW/eYCxKxOzmKsRPCLiMBQVAqydUP7TovXrkp6Y/t8oNd9otDl5SHbr9UcvWCWTGnMBaJlZECyFB39S/bj1ASYiYRhUJ0LDOWTgq5JIjicd5OBI4hGsAu7ijKYIiFk05/GBsnSvGNIOKqmDSm6u+JFIZCjEJPdYZQ9sS8NxH/8zqJDC6clLA4kZih2aIgoYaMjEkghk84RpKOFIGIE3WrgXqQQyRVbHkVgjX/8iJpVivWaaV6e1aoXWZx5MAROAZFYIFzUAM3oA4aAIFH8AxewZv2pL1o79rHrHVJy2YOwB9onz8GnJZz</latexit>

xi 2 S
<latexit sha1_base64="7t5QXc2rYqIS0KbKyRGmhx8z8bA=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4KkkVFFcFNy4r2gc0pUymk3boZBJmJtIS8ituXCji1h9x5984abPQ1gMDh3Pu5Z45fsyZ0o7zba2tb2xubZd2yrt7+weH9lGlraJEEtoiEY9k18eKciZoSzPNaTeWFIc+px1/cpv7nScqFYvEo57FtB/ikWABI1gbaWBXpgOGPCaQF2I99v30IRvYVafmzIFWiVuQKhRoDuwvbxiRJKRCE46V6rlOrPsplpoRTrOylygaYzLBI9ozVOCQqn46z56hM6MMURBJ84RGc/X3RopDpWahbybzhGrZy8X/vF6ig+t+ykScaCrI4lCQcKQjlBeBhkxSovnMEEwkM1kRGWOJiTZ1lU0J7vKXV0m7XnMvavX7y2rjpqijBCdwCufgwhU04A6a0AICU3iGV3izMuvFerc+FqNrVrFzDH9gff4AmsuUIw==</latexit>

d(xi, xj)
<latexit sha1_base64="tdUUugzXgUGcj+oDe+qMrZL5GzM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBotQQUpSBcVVwY3LCvaBbQiTyaQdO5mEmYm0hP6FGxeKuPVv3Pk3Th8LbT1w4XDOvdx7j59wprRtf1u5ldW19Y38ZmFre2d3r7h/0FRxKgltkJjHsu1jRTkTtKGZ5rSdSIojn9OWP7iZ+K0nKhWLxb0eJdSNcE+wkBGsjfQQlIceOxt6j6desWRX7CnQMnHmpARz1L3iVzeISRpRoQnHSnUcO9FuhqVmhNNxoZsqmmAywD3aMVTgiCo3m148RidGCVAYS1NCo6n6eyLDkVKjyDedEdZ9tehNxP+8TqrDKzdjIkk1FWS2KEw50jGavI8CJinRfGQIJpKZWxHpY4mJNiEVTAjO4svLpFmtOOeV6t1FqXY9jyMPR3AMZXDgEmpwC3VoAAEBz/AKb5ayXqx362PWmrPmM4fwB9bnD6wAkDw=</latexit>

0 2 4 6 8 10
distance, d(x i,xj)

Pr
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ij)

d(xi, xj)
<latexit sha1_base64="tdUUugzXgUGcj+oDe+qMrZL5GzM=">AAAB8XicbVDLSsNAFL2pr1pfVZduBotQQUpSBcVVwY3LCvaBbQiTyaQdO5mEmYm0hP6FGxeKuPVv3Pk3Th8LbT1w4XDOvdx7j59wprRtf1u5ldW19Y38ZmFre2d3r7h/0FRxKgltkJjHsu1jRTkTtKGZ5rSdSIojn9OWP7iZ+K0nKhWLxb0eJdSNcE+wkBGsjfQQlIceOxt6j6desWRX7CnQMnHmpARz1L3iVzeISRpRoQnHSnUcO9FuhqVmhNNxoZsqmmAywD3aMVTgiCo3m148RidGCVAYS1NCo6n6eyLDkVKjyDedEdZ9tehNxP+8TqrDKzdjIkk1FWS2KEw50jGavI8CJinRfGQIJpKZWxHpY4mJNiEVTAjO4svLpFmtOOeV6t1FqXY9jyMPR3AMZXDgEmpwC3VoAAEBz/AKb5ayXqx362PWmrPmM4fwB9bnD6wAkDw=</latexit>

P
r(
A

ij
)

<latexit sha1_base64="Wn734+BNcGgO2s6tAYwTGR5tANg=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQL2VXBcVTxYvHCvYDtkvJptk2NpssyaxQlv4MLx4U8eqv8ea/MW33oK0PBh7vzTAzL0wEN+C6305hZXVtfaO4Wdra3tndK+8ftIxKNWVNqoTSnZAYJrhkTeAgWCfRjMShYO1wdDv1209MG67kA4wTFsRkIHnEKQEr+d2Grt70Mv44Oe2VK27NnQEvEy8nFZSj0St/dfuKpjGTQAUxxvfcBIKMaOBUsEmpmxqWEDoiA+ZbKknMTJDNTp7gE6v0caS0LQl4pv6eyEhszDgObWdMYGgWvan4n+enEF0FGZdJCkzS+aIoFRgUnv6P+1wzCmJsCaGa21sxHRJNKNiUSjYEb/HlZdI6q3nntbP7i0r9Oo+jiI7QMaoiD12iOrpDDdREFCn0jF7RmwPOi/PufMxbC04+c4j+wPn8AYo7kL4=</latexit>

generation

inference

model

G=(V,E)

data

Pr(G | θ)

https://amstat.tandfonline.com/doi/abs/10.1198/016214502388618906


feature real networks

degree 
distribution

clustering 
coefficient

diameter

large-scale 
structure

what patterns should we expect?



feature real networks

degree 
distribution heavy tailed

clustering 
coefficient

social: higher
non-social: lower

diameter small, like    .

large-scale 
structure

communities, dense core, 
hierarchies, etc.

what patterns should we expect?

O(lnn)



Erdos-Renyi random graphs

denoted 
where edges are iid

comments:
• highly unrealistic model (all edges iid)
• but, useful for building intuition & doing math
• the most well-studied random graph model
• warm up for more realistic models

G(n, p)

Pr(Aij) = p =
c

n� 1
<latexit sha1_base64="tOm/fX3Hdem0i36JKBe8aQ0KYxE=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhahLixJFRRBqLhxWcE+oAlhMp20YyeTMDMRSsjSjb/ixoUibv0Ed/6N0zYLbT1w4XDOvdx7jx8zKpVlfRuFhcWl5ZXiamltfWNzy9zeackoEZg0ccQi0fGRJIxy0lRUMdKJBUGhz0jbH16P/fYDEZJG/E6NYuKGqM9pQDFSWvLMfachKldeSu+zI3gJY11OIBBOcZbyYzvzzLJVtSaA88TOSRnkaHjml9OLcBISrjBDUnZtK1ZuioSimJGs5CSSxAgPUZ90NeUoJNJNJ49k8FArPRhEQhdXcKL+nkhRKOUo9HVniNRAznpj8T+vm6jg3E0pjxNFOJ4uChIGVQTHqcAeFQQrNtIEYUH1rRAPkM5B6exKOgR79uV50qpV7ZNq7fa0XL/I4yiCPXAAKsAGZ6AObkADNAEGj+AZvII348l4Md6Nj2lrwchndsEfGJ8/SEKYOA==</latexit>

mean degree

* Erdös & Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5 ,17-61 (1960)



degree distribution

mean degree:

degree distribution:

hki = c = (n� 1)p

Poisson distribution
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mean degree, c = 1
mean degree, c = 3
mean degree, c = 8

Pr(k) = e�c c
k

k!
<latexit sha1_base64="elL+oZ1k/hRa+Q/0tKH5UrEykPk=">AAACD3icbVDJSgNBEO1xN25Rj15agxIPhhkVFEEIePEYwcRAJgk9nRptpmehu0YMw/yBF3/FiwdFvHr15t/YWQ5uDwoe71VRVc9LpNBo25/WxOTU9Mzs3HxhYXFpeaW4utbQcao41HksY9X0mAYpIqijQAnNRAELPQlXXnA28K9uQWkRR5fYT6AdsutI+IIzNFK3uOPWVDnYpafURbhDFWaQd7I9nru+YjzjnSDPgs28WyzZFXsI+pc4Y1IiY9S6xQ+3F/M0hAi5ZFq3HDvBdsYUCi4hL7iphoTxgF1Dy9CIhaDb2fCfnG4bpUf9WJmKkA7V7xMZC7Xuh57pDBne6N/eQPzPa6XoH7czESUpQsRHi/xUUozpIBzaEwo4yr4hjCthbqX8hpkg0ERYMCE4v1/+Sxr7Feegsn9xWKqejOOYIxtki5SJQ45IlZyTGqkTTu7JI3kmL9aD9WS9Wm+j1glrPLNOfsB6/wKNhZxd</latexit>

}



degree distribution

mean degree:

degree distribution:

clustering coefficient: 

hki = c = (n� 1)p

Poisson distributionPr(k) = e�c c
k

k!
<latexit sha1_base64="elL+oZ1k/hRa+Q/0tKH5UrEykPk=">AAACD3icbVDJSgNBEO1xN25Rj15agxIPhhkVFEEIePEYwcRAJgk9nRptpmehu0YMw/yBF3/FiwdFvHr15t/YWQ5uDwoe71VRVc9LpNBo25/WxOTU9Mzs3HxhYXFpeaW4utbQcao41HksY9X0mAYpIqijQAnNRAELPQlXXnA28K9uQWkRR5fYT6AdsutI+IIzNFK3uOPWVDnYpafURbhDFWaQd7I9nru+YjzjnSDPgs28WyzZFXsI+pc4Y1IiY9S6xQ+3F/M0hAi5ZFq3HDvBdsYUCi4hL7iphoTxgF1Dy9CIhaDb2fCfnG4bpUf9WJmKkA7V7xMZC7Xuh57pDBne6N/eQPzPa6XoH7czESUpQsRHi/xUUozpIBzaEwo4yr4hjCthbqX8hpkg0ERYMCE4v1/+Sxr7Feegsn9xWKqejOOYIxtki5SJQ45IlZyTGqkTTu7JI3kmL9aD9WS9Wm+j1glrPLNOfsB6/wKNhZxd</latexit>

}
C =

3⇥#triangles

#connected triples

C =

�n
3

�
p
3

�n
3

�
p2

= p =
c

n� 1
= O(n�1)

asymptotically,
zero clustering

}



degree distribution

mean degree:

degree distribution:

clustering coefficient: 

diameter:                is locally tree-like

mean number of vertices within    steps is

all    vertices within     steps

thus, diameter is

hki = c = (n� 1)p

Poisson distributionPr(k) = e�c c
k

k!
<latexit sha1_base64="elL+oZ1k/hRa+Q/0tKH5UrEykPk=">AAACD3icbVDJSgNBEO1xN25Rj15agxIPhhkVFEEIePEYwcRAJgk9nRptpmehu0YMw/yBF3/FiwdFvHr15t/YWQ5uDwoe71VRVc9LpNBo25/WxOTU9Mzs3HxhYXFpeaW4utbQcao41HksY9X0mAYpIqijQAnNRAELPQlXXnA28K9uQWkRR5fYT6AdsutI+IIzNFK3uOPWVDnYpafURbhDFWaQd7I9nru+YjzjnSDPgs28WyzZFXsI+pc4Y1IiY9S6xQ+3F/M0hAi5ZFq3HDvBdsYUCi4hL7iphoTxgF1Dy9CIhaDb2fCfnG4bpUf9WJmKkA7V7xMZC7Xuh57pDBne6N/eQPzPa6XoH7czESUpQsRHi/xUUozpIBzaEwo4yr4hjCthbqX8hpkg0ERYMCE4v1/+Sxr7Feegsn9xWKqejOOYIxtki5SJQ45IlZyTGqkTTu7JI3kmL9aD9WS9Wm+j1glrPLNOfsB6/wKNhZxd</latexit>

}
C =

3⇥#triangles

#connected triples
C =

�n
3

�
p
3

�n
3

�
p2

= p =
c

n� 1
= O(n�1) asymptotically, zero}

G(n, p)

css

n `

` = O(lnn)
<latexit sha1_base64="mQ3VD9ubgH+ag8w+vO4Hi4xpJos=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkpSBUUQCl68WcF+QBPKZrtpl242YXcj1NBf4sWDIl79Kd78N27bHLT1wcDjvRlm5gUJZ0o7zre1srq2vrFZ2Cpu7+zulez9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g9HN1G8/UqlYLB70OKF+hAeChYxgbaSeXfIo5+ga3VU8LpA47dllp+rMgJaJm5My5Gj07C+vH5M0okITjpXquk6i/QxLzQink6KXKppgMsID2jVU4IgqP5sdPkEnRumjMJamhEYz9fdEhiOlxlFgOiOsh2rRm4r/ed1Uh5d+xkSSairIfFGYcqRjNE0B9ZmkRPOxIZhIZm5FZIglJtpkVTQhuIsvL5NWreqeVWv35+X6VR5HAY7gGCrgwgXU4RYa0AQCKTzDK7xZT9aL9W59zFtXrHzmEP7A+vwBlmCRtw==</latexit>

* this argument can be made more formal, but yields the same asymptotic result

}
a "small" world



examples of ER random graphs
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feature real networks

degree 
distribution Poisson heavy tailed

clustering 
coefficient

social: higher
non-social: lower

diameter small

large-scale 
structure none communities, dense 

core, hierarchies, etc.

how are we doing?

G(n, p)

O(n�1)

O(lnn)



degree-based random graphs

configuration model : a random graph conditioned on having the 
specified degree sequence 

* Fosdick et al. SIAM Review 60, 315-355 (2018)
* Chung & Lu, Ann. Comb. 6, 125-145 (2002) specifies a model that produces a simple graph with a given degree sequence in expectation

{k1, k2, . . . , kn}
<latexit sha1_base64="0JJ44667UQ+ahX0tJ3rMD8KM0Wc=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBRSlJFRRXBTcuK9gHNCFMppN26GQSZiZCCQV/xY0LRdz6He78G6dtFtp6YOBwzj3cOydMOVPacb6tldW19Y3N0lZ5e2d3b98+OGyrJJOEtkjCE9kNsaKcCdrSTHPaTSXFcchpJxzdTv3OI5WKJeJBj1Pqx3ggWMQI1kYK7GMvHwVudRTUq14/0cow4U0Cu+LUnBnQMnELUoECzcD+MmmSxVRowrFSPddJtZ9jqRnhdFL2MkVTTEZ4QHuGChxT5eez8yfozCh9FCXSPKHRTP2dyHGs1DgOzWSM9VAtelPxP6+X6ejaz5lIM00FmS+KMo50gqZdoD6TlGg+NgQTycytiAyxxESbxsqmBHfxy8ukXa+5F7X6/WWlcVPUUYITOIVzcOEKGnAHTWgBgRye4RXerCfrxXq3PuajK1aROYI/sD5/ACdBlPI=</latexit>

Pr(i ! j) =
kikj
2m

<latexit sha1_base64="l2kjMThYrr0+ld79KlEcy2MhMdM=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0Wom5JUQRGEghuXFewDmhAm00k7zUwSZiZCCdm68VfcuFDErX/gzr9x2mahrQcGDufcy51z/IRRqSzr2yitrK6tb5Q3K1vbO7t75v5BR8apwKSNYxaLno8kYTQibUUVI71EEMR9Rrp+eDP1uw9ESBpH92qSEJejYUQDipHSkmdCpyVq1FExHJ/Ca+gEAuEs9CgMvXGeNXjumVWrbs0Al4ldkCoo0PLML2cQ45STSGGGpOzbVqLcDAlFMSN5xUklSRAO0ZD0NY0QJ9LNZklyeKKVAQxioV+k4Ez9vZEhLuWE+3qSIzWSi95U/M/rpyq4dDMaJakiEZ4fClIGdfBpLXBABcGKTTRBWFD9V4hHSJehdHkVXYK9GHmZdBp1+6zeuDuvNq+KOsrgCByDGrDBBWiCW9ACbYDBI3gGr+DNeDJejHfjYz5aMoqdQ/AHxucPuIKZEw==</latexit>

https://epubs.siam.org/doi/abs/10.1137/16M1087175
https://link.springer.com/article/10.1007/PL00012580


degree-based random graphs

configuration model : a random graph conditioned on having the 
specified degree sequence 

double-edge swap algorithm:
start with a graph
choose                         uniformly
rearrange to     or     
repeat until convergence

* we use the MCMC from Fosdick et al. SIAM Review (2018) [covers technical details]
* we choose sampling gap and convergence time via Dutta et al. Preprint (2022)

{k1, k2, . . . , kn}
<latexit sha1_base64="0JJ44667UQ+ahX0tJ3rMD8KM0Wc=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBRSlJFRRXBTcuK9gHNCFMppN26GQSZiZCCQV/xY0LRdz6He78G6dtFtp6YOBwzj3cOydMOVPacb6tldW19Y3N0lZ5e2d3b98+OGyrJJOEtkjCE9kNsaKcCdrSTHPaTSXFcchpJxzdTv3OI5WKJeJBj1Pqx3ggWMQI1kYK7GMvHwVudRTUq14/0cow4U0Cu+LUnBnQMnELUoECzcD+MmmSxVRowrFSPddJtZ9jqRnhdFL2MkVTTEZ4QHuGChxT5eez8yfozCh9FCXSPKHRTP2dyHGs1DgOzWSM9VAtelPxP6+X6ejaz5lIM00FmS+KMo50gqZdoD6TlGg+NgQTycytiAyxxESbxsqmBHfxy8ukXa+5F7X6/WWlcVPUUYITOIVzcOEKGnAHTWgBgRye4RXerCfrxXq3PuajK1aROYI/sD5/ACdBlPI=</latexit>

Pr(i ! j) =
kikj
2m

<latexit sha1_base64="l2kjMThYrr0+ld79KlEcy2MhMdM=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0Wom5JUQRGEghuXFewDmhAm00k7zUwSZiZCCdm68VfcuFDErX/gzr9x2mahrQcGDufcy51z/IRRqSzr2yitrK6tb5Q3K1vbO7t75v5BR8apwKSNYxaLno8kYTQibUUVI71EEMR9Rrp+eDP1uw9ESBpH92qSEJejYUQDipHSkmdCpyVq1FExHJ/Ca+gEAuEs9CgMvXGeNXjumVWrbs0Al4ldkCoo0PLML2cQ45STSGGGpOzbVqLcDAlFMSN5xUklSRAO0ZD0NY0QJ9LNZklyeKKVAQxioV+k4Ez9vZEhLuWE+3qSIzWSi95U/M/rpyq4dDMaJakiEZ4fClIGdfBpLXBABcGKTTRBWFD9V4hHSJehdHkVXYK9GHmZdBp1+6zeuDuvNq+KOsrgCByDGrDBBWiCW9ACbYDBI3gGr+DNeDJejHfjYz5aMoqdQ/AHxucPuIKZEw==</latexit>

{(u, v), (x, y)}
<latexit sha1_base64="ZAegGdGpNBz+D5WBwTNPJa3zsiQ=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSxCC6UkVVBcFdy4rGAf0IQymU7boZNJmEcxhn6JGxeKuPVT3Pk3TtsstPXAhcM593LvPUHMqFSO823lNja3tnfyu4W9/YPDon103JaRFpi0cMQi0Q2QJIxy0lJUMdKNBUFhwEgnmNzO/c6UCEkj/qCSmPghGnE6pBgpI/XtopeWdXVaqZYfq0nFm/XtklNzFoDrxM1ICWRo9u0vbxBhHRKuMENS9lwnVn6KhKKYkVnB05LECE/QiPQM5Sgk0k8Xh8/guVEGcBgJU1zBhfp7IkWhlEkYmM4QqbFc9ebif15Pq+G1n1Iea0U4Xi4aagZVBOcpwAEVBCuWGIKwoOZWiMdIIKxMVgUTgrv68jpp12vuRa1+f1lq3GRx5MEpOANl4IIr0AB3oAlaAAMNnsEreLOerBfr3fpYtuasbOYE/IH1+QPrCpHv</latexit>

A
<latexit sha1_base64="2DqE0eEhQ9ek2Ve39QaUnRcxNM0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8eIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6re9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD5HDjME=</latexit>

B<latexit sha1_base64="ztzYVjTQvPIlRjrBs2JAgGtg4ic=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6re9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD5NHjMI=</latexit>

A
<latexit sha1_base64="2DqE0eEhQ9ek2Ve39QaUnRcxNM0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8eIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6re9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD5HDjME=</latexit>

B<latexit sha1_base64="ztzYVjTQvPIlRjrBs2JAgGtg4ic=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU9OIxAfOAZAmzk95kzOzsMjMrhJAv8OJBEa9+kjf/xkmyB00saCiquunuChLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3c381hMqzWP5YMYJ+hEdSB5yRo2V6re9Ysktu3OQVeJlpAQZar3iV7cfszRCaZigWnc8NzH+hCrDmcBpoZtqTCgb0QF2LJU0Qu1P5odOyZlV+iSMlS1pyFz9PTGhkdbjKLCdETVDvezNxP+8TmrCa3/CZZIalGyxKEwFMTGZfU36XCEzYmwJZYrbWwkbUkWZsdkUbAje8surpFkpexflSv2yVL3J4sjDCZzCOXhwBVW4hxo0gAHCM7zCm/PovDjvzseiNedkM8fwB87nD5NHjMI=</latexit>

degree preserving

} G
<latexit sha1_base64="U+aLTJDKbwj1/7xFYDTxbU4NhLg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8KDHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/1iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP5rbjMc=</latexit>

record a      every 2mG
<latexit sha1_base64="U+aLTJDKbwj1/7xFYDTxbU4NhLg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEU8KDHBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/1iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThHmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP5rbjMc=</latexit>

*

https://epubs.siam.org/doi/abs/10.1137/16M1087175
https://arxiv.org/abs/2105.12120


degree-based random graphs

configuration model : a random graph conditioned on having the 
specified degree sequence 

clustering coefficient:

{k1, k2, . . . , kn}
<latexit sha1_base64="0JJ44667UQ+ahX0tJ3rMD8KM0Wc=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBRSlJFRRXBTcuK9gHNCFMppN26GQSZiZCCQV/xY0LRdz6He78G6dtFtp6YOBwzj3cOydMOVPacb6tldW19Y3N0lZ5e2d3b98+OGyrJJOEtkjCE9kNsaKcCdrSTHPaTSXFcchpJxzdTv3OI5WKJeJBj1Pqx3ggWMQI1kYK7GMvHwVudRTUq14/0cow4U0Cu+LUnBnQMnELUoECzcD+MmmSxVRowrFSPddJtZ9jqRnhdFL2MkVTTEZ4QHuGChxT5eez8yfozCh9FCXSPKHRTP2dyHGs1DgOzWSM9VAtelPxP6+X6ejaz5lIM00FmS+KMo50gqZdoD6TlGg+NgQTycytiAyxxESbxsqmBHfxy8ukXa+5F7X6/WWlcVPUUYITOIVzcOEKGnAHTWgBgRye4RXerCfrxXq3PuajK1aROYI/sD5/ACdBlPI=</latexit>

C =
3⇥#triangles

#connected triples

C =
1

n

⇥
hk2i � hki

⇤2

hki3 = O(n�1)

asymptotically,
zero clustering

}



degree-based random graphs

configuration model : a random graph conditioned on having the 
specified degree sequence 

clustering coefficient:

diameter: also locally tree-like (if variance of degrees is finite) 

following similar argument as ER graphs

{k1, k2, . . . , kn}
<latexit sha1_base64="0JJ44667UQ+ahX0tJ3rMD8KM0Wc=">AAAB/nicbVDLSsNAFL3xWesrKq7cDBbBRSlJFRRXBTcuK9gHNCFMppN26GQSZiZCCQV/xY0LRdz6He78G6dtFtp6YOBwzj3cOydMOVPacb6tldW19Y3N0lZ5e2d3b98+OGyrJJOEtkjCE9kNsaKcCdrSTHPaTSXFcchpJxzdTv3OI5WKJeJBj1Pqx3ggWMQI1kYK7GMvHwVudRTUq14/0cow4U0Cu+LUnBnQMnELUoECzcD+MmmSxVRowrFSPddJtZ9jqRnhdFL2MkVTTEZ4QHuGChxT5eez8yfozCh9FCXSPKHRTP2dyHGs1DgOzWSM9VAtelPxP6+X6ejaz5lIM00FmS+KMo50gqZdoD6TlGg+NgQTycytiAyxxESbxsqmBHfxy8ukXa+5F7X6/WWlcVPUUYITOIVzcOEKGnAHTWgBgRye4RXerCfrxXq3PuajK1aROYI/sD5/ACdBlPI=</latexit>

C =
1

n

⇥
hk2i � hki

⇤2

hki3 = O(n�1)C =
3⇥#triangles

#connected triples
asymptotically, zero}

` = O(lnn)
<latexit sha1_base64="mQ3VD9ubgH+ag8w+vO4Hi4xpJos=">AAAB+HicbVBNS8NAEJ34WetHox69LBahXkpSBUUQCl68WcF+QBPKZrtpl242YXcj1NBf4sWDIl79Kd78N27bHLT1wcDjvRlm5gUJZ0o7zre1srq2vrFZ2Cpu7+zulez9g5aKU0lok8Q8lp0AK8qZoE3NNKedRFIcBZy2g9HN1G8/UqlYLB70OKF+hAeChYxgbaSeXfIo5+ga3VU8LpA47dllp+rMgJaJm5My5Gj07C+vH5M0okITjpXquk6i/QxLzQink6KXKppgMsID2jVU4IgqP5sdPkEnRumjMJamhEYz9fdEhiOlxlFgOiOsh2rRm4r/ed1Uh5d+xkSSairIfFGYcqRjNE0B9ZmkRPOxIZhIZm5FZIglJtpkVTQhuIsvL5NWreqeVWv35+X6VR5HAY7gGCrgwgXU4RYa0AQCKTzDK7xZT9aL9W59zFtXrHzmEP7A+vwBlmCRtw==</latexit>

}
a "small" world



the standard null model for empirical patterns

defines a probability distribution 

if           is "typical" within 

then we say that     "explains" 

degree-based random graphs

e.g. from an empirical 
or a preferred 

Pr(G |~k)
<latexit sha1_base64="De3pB+jiUsdOcBSU30oY2ZMaKwk=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRahQilJFRRPBQ96rGA/oAlls522SzebsLsplpi/4sWDIl79I978N27bHLT1wcDjvRlm5vkRo1LZ9reRW1vf2NzKbxd2dvf2D8zDYkuGsSDQJCELRcfHEhjl0FRUMehEAnDgM2j745uZ356AkDTkD2oagRfgIacDSrDSUs8sug1RvnUrT27FnQBJxulZzyzZVXsOa5U4GSmhDI2e+eX2QxIHwBVhWMquY0fKS7BQlDBIC24sIcJkjIfQ1ZTjAKSXzG9PrVOt9K1BKHRxZc3V3xMJDqScBr7uDLAayWVvJv7ndWM1uPISyqNYASeLRYOYWSq0ZkFYfSqAKDbVBBNB9a0WGWGBidJxFXQIzvLLq6RVqzrn1dr9Ral+ncWRR8foBJWRgy5RHd2hBmoigh7RM3pFb0ZqvBjvxseiNWdkM0foD4zPH8aDk5o=</latexit>

G�<latexit sha1_base64="yjQc/X5/sOG4IGFjWOjEDmiProg=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoHgqeNBjBfsBbSib7aRdutmE3Y1QQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFySCa+O6305hbX1jc6u4XdrZ3ds/KB8etXScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwvp357SdUmsfy0UwS9CM6lDzkjBorte/6PcYV65crbtWdg6wSLycVyNHol796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n83PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwms/4zJJDUq2WBSmgpiYzH4nA66QGTGxhDLF7a2EjaiizNiESjYEb/nlVdKqVb2Lau3hslK/yeMowgmcwjl4cAV1uIcGNIHBGJ7hFd6cxHlx3p2PRWvByWeO4Q+czx8Tbo9f</latexit>

f(G�)
<latexit sha1_base64="5CwvBEka44f4lLEH6w3Zzf7YJ+w=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJexGQfEU8KDHCOaByRJmJ7PJkNnZZaZXCCF/4cWDIl79G2/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw5up33zi2ohYPeAo4X5E+0qEglG00mNYuu12mNDsrFsoumV3BrJMvIwUIUOtW/jq9GKWRlwhk9SYtucm6I+pRsEkn+Q7qeEJZUPa521LFY248ceziyfk1Co9EsbalkIyU39PjGlkzCgKbGdEcWAWvan4n9dOMbzyx0IlKXLF5ovCVBKMyfR90hOaM5QjSyjTwt5K2IBqytCGlLcheIsvL5NGpeydlyv3F8XqdRZHDo7hBErgwSVU4Q5qUAcGCp7hFd4c47w4787HvHXFyWaO4A+czx+fKJA0</latexit>

Pr(f(G) |~k)
<latexit sha1_base64="PwYPqJggDhAnT0ROl+gQ4U7DNqY=">AAAB/nicbVBNS8NAEN3Ur1q/ouLJS7AILZSSVEHxVPCgxwq2FZpQNttJu3SzCbubQokF/4oXD4p49Xd489+4bXPQ1gcDj/dmmJnnx4xKZdvfRm5ldW19I79Z2Nre2d0z9w9aMkoEgSaJWCQefCyBUQ5NRRWDh1gADn0GbX94PfXbIxCSRvxejWPwQtznNKAEKy11zSO3IUpB6absVh7dijsCkg4n5a5ZtKv2DNYycTJSRBkaXfPL7UUkCYErwrCUHceOlZdioShhMCm4iYQYkyHuQ0dTjkOQXjo7f2KdaqVnBZHQxZU1U39PpDiUchz6ujPEaiAXvan4n9dJVHDppZTHiQJO5ouChFkqsqZZWD0qgCg21gQTQfWtFhlggYnSiRV0CM7iy8ukVas6Z9Xa3XmxfpXFkUfH6ASVkIMuUB3dogZqIoJS9Ixe0ZvxZLwY78bHvDVnZDOH6A+Mzx9aWJRv</latexit>

~k
<latexit sha1_base64="p4SliaJawugt7bhuRwYqdMrJ0/c=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoHgqePFYwX5AG8pmO2mXbjZhd1MooT/CiwdFvPp7vPlv3LY5aOuDgcd7M8zMCxLBtXHdb6ewsbm1vVPcLe3tHxwelY9PWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38/99gSV5rF8MtME/YgOJQ85o8ZK7d4EWTae9csVt+ouQNaJl5MK5Gj0y1+9QczSCKVhgmrd9dzE+BlVhjOBs1Iv1ZhQNqZD7FoqaYTazxbnzsiFVQYkjJUtachC/T2R0UjraRTYzoiakV715uJ/Xjc14a2fcZmkBiVbLgpTQUxM5r+TAVfIjJhaQpni9lbCRlRRZmxCJRuCt/ryOmnVqt5VtfZ4Xanf5XEU4QzO4RI8uIE6PEADmsBgDM/wCm9O4rw4787HsrXg5DOn8AfO5w+dCI+5</latexit>

f(G�)
<latexit sha1_base64="5CwvBEka44f4lLEH6w3Zzf7YJ+w=">AAAB8XicbVDLSgNBEOz1GeMr6tHLYBDiJexGQfEU8KDHCOaByRJmJ7PJkNnZZaZXCCF/4cWDIl79G2/+jZNkD5pY0FBUddPdFSRSGHTdb2dldW19YzO3ld/e2d3bLxwcNkycasbrLJaxbgXUcCkUr6NAyVuJ5jQKJG8Gw5up33zi2ohYPeAo4X5E+0qEglG00mNYuu12mNDsrFsoumV3BrJMvIwUIUOtW/jq9GKWRlwhk9SYtucm6I+pRsEkn+Q7qeEJZUPa521LFY248ceziyfk1Co9EsbalkIyU39PjGlkzCgKbGdEcWAWvan4n9dOMbzyx0IlKXLF5ovCVBKMyfR90hOaM5QjSyjTwt5K2IBqytCGlLcheIsvL5NGpeydlyv3F8XqdRZHDo7hBErgwSVU4Q5qUAcGCp7hFd4c47w4787HvHXFyWaO4A+czx+fKJA0</latexit>

Pr(k)
<latexit sha1_base64="vqy0Gg0GZxcaR7DrkKIjH2I4gYc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0mqoHgqePFYwX5AG8pmu2mXbDZhdyKU0h/hxYMiXv093vw3btsctPXBwOO9GWbmBakUBl3321lb39jc2i7sFHf39g8OS0fHLZNkmvEmS2SiOwE1XArFmyhQ8k6qOY0DydtBdDfz209cG5GoRxyn3I/pUIlQMIpWavcauhJdkH6p7FbdOcgq8XJShhyNfumrN0hYFnOFTFJjup6boj+hGgWTfFrsZYanlEV0yLuWKhpz40/m507JuVUGJEy0LYVkrv6emNDYmHEc2M6Y4sgsezPxP6+bYXjjT4RKM+SKLRaFmSSYkNnvZCA0ZyjHllCmhb2VsBHVlKFNqGhD8JZfXiWtWtW7rNYersr12zyOApzCGVTAg2uowz00oAkMIniGV3hzUufFeXc+Fq1rTj5zAn/gfP4AEtCOtg==</latexit>

* when a            is drawn from a power-law distribution, we call these "power-law random graphs", which are a popular model for mathematical calculationsPr(k)
<latexit sha1_base64="vqy0Gg0GZxcaR7DrkKIjH2I4gYc=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSLUS0mqoHgqePFYwX5AG8pmu2mXbDZhdyKU0h/hxYMiXv093vw3btsctPXBwOO9GWbmBakUBl3321lb39jc2i7sFHf39g8OS0fHLZNkmvEmS2SiOwE1XArFmyhQ8k6qOY0DydtBdDfz209cG5GoRxyn3I/pUIlQMIpWavcauhJdkH6p7FbdOcgq8XJShhyNfumrN0hYFnOFTFJjup6boj+hGgWTfFrsZYanlEV0yLuWKhpz40/m507JuVUGJEy0LYVkrv6emNDYmHEc2M6Y4sgsezPxP6+bYXjjT4RKM+SKLRaFmSSYkNnvZCA0ZyjHllCmhb2VsBHVlKFNqGhD8JZfXiWtWtW7rNYersr12zyOApzCGVTAg2uowz00oAkMIniGV3hzUufFeXc+Fq1rTj5zAn/gfP4AEtCOtg==</latexit>



the standard null model for empirical patterns

degree-based random graphs

grassland species grassland species
(randomized)
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the standard null model for empirical patterns

degree-based random graphs

* null distribution from 10^6 configuration models. what the configuration model gets wrong is the community structure. most everything else is well-explained by the degree structure alone
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the standard null model for empirical patterns

degree-based random graphs
Group
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feature configuration real networks

degree 
distribution Poisson specified heavy tailed

clustering 
coefficient

social: higher
non-social: lower

diameter small

large-scale 
structure none none

communities, dense 
core, hierarchies, 

etc.

how are we doing?

G(n, p)

O(n�1)

O(lnn) O(lnn)

O(n�1)



• each vertex     has type                           (   vertex types or groups)

• stochastic block matrix      of group-level connection probabilities

• probability that        are connected = 

community = vertices with same pattern of inter-community connections

stochastic block models

i zi 2 {1, . . . , k}
M

k

i, j Mzi,zj
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mixing matrix M



assortative
edges within groups

disassortative
edges between groups

ordered
linear group hierarchy

core-periphery
dense core, sparse periphery

stochastic block models



likelihood function
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many stochastic block models

stochastic block models
k types of vertices,                           depends only on node types 
originally invented by sociologists [Holland, Laskey, Leinhardt 1983]

many, many flavors, including
binomial SBM [Holland et al. 1983, Wang & Wong 1987]

simple assortative SBM [Hofman & Wiggins 2008]

mixed-membership SBM [Airoldi et al. 2008] 

hierarchical SBM [Clauset et al. 2006,2008, Peixoto 2014]

fractal SBM [Leskovec et al. 2005]

infinite relational model [Kemp et al. 2006]

degree-corrected SBM [Karrer & Newman 2011]

SBM + topic models [Ball et al. 2011]

SBM + vertex covariates [Mariadassou et al. 2010, Newman & Clauset 2016]

SBM + edge weights [Aicher et al. 2013,2014, Peixoto 2015]

bipartite SBM [Larremore et al. 2014]

multilayer SBM [Peixoto 2015, Valles-Catata et al. 2016]

and many others

Pr(Aij |M, z) zi, zj

http://jmlr.csail.mit.edu/papers/v9/airoldi08a.html
https://arxiv.org/abs/0811.0484
https://arxiv.org/abs/1310.4377
https://arxiv.org/abs/1104.3590
https://arxiv.org/abs/1507.04001
https://arxiv.org/abs/1404.0431
https://arxiv.org/abs/1504.02381
https://arxiv.org/abs/1403.2933


degree-corrected SBM (   = Poisson)

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)

f

one important stochastic block model

https://arxiv.org/abs/1008.3926


degree-corrected SBM (   = Poisson)

key assumption
stochastic block matrix
(degree) propensity of node
likelihood:
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given i and r can thus be done in time O(K(K + 〈k〉)).
Because these computations can be done quickly for a
reasonable number of communities, local vertex switch-
ing algorithms, such as single-vertex Monte Carlo, can be
implemented easily. Monte Carlo, however, is slow, and
we have found competitive results using a local heuristic
algorithm similar in spirit to the Kernighan–Lin algo-
rithm used in minimum-cut graph partitioning [27].
Briefly, in this algorithm we divide the network into

some initial set of K communities at random. Then we
repeatedly move a vertex from one group to another, se-
lecting at each step the move that will most increase the
objective function—or least decrease it if no increase is
possible—subject to the restriction that each vertex may
be moved only once. When all vertices have been moved,
we inspect the states through which the system passed
from start to end of the procedure, select the one with the
highest objective score, and use this state as the starting
point for a new iteration of the same procedure. When
a complete such iteration passes without any increase in
the objective function, the algorithm ends. As with many
deterministic algorithms, we have found it helpful to run
the calculation with several different random initial con-
ditions and take the best result over all runs.

IV. RESULTS

We have tested the performance of the degree-
corrected and uncorrected blockmodels in applications
both to real-world networks with known community as-
signments and to a range of synthetic (i.e., computer-
generated) networks. We evaluate performance by quan-
titative comparison of the community assignments found
by the algorithms and the known assignments. As a met-
ric for comparison we use the normalized mutual infor-
mation, which is defined as follows [7]. Let nrs be the
number of vertices in community r in the inferred group
assignment and in community s in the true assignment.
Then define p(X = r, Y = s) = nrs/n to be the joint
probability that a randomly selected vertex is in r in the
inferred assignment and s in the true assignment. Using
this joint probability over the random variables X and
Y , the normalized mutual information is

NMI(X,Y ) =
2MI(X,Y )

H(X) +H(Y )
, (26)

where MI(X,Y ) is the mutual information and H(Z) is
the entropy of random variable Z. The normalized mu-
tual information measures the similarity of the two com-
munity assignments and takes a value of one if the as-
signments are identical and zero if they are uncorrelated.
A discussion of this and other measures can be found in
Ref. [28].

(a) Without degree correction

(b) With degree-correction

FIG. 1: Divisions of the karate club network found using the
(a) uncorrected and (b) corrected blockmodels. The size of a
vertex is proportional to its degree and vertex color reflects
inferred group membership. The dashed line indicates the
split observed in real life.

A. Empirical networks

We have tested our algorithms on real-world networks
ranging in size from tens to tens of thousands of ver-
tices. In networks with highly homogeneous degree distri-
butions we find little difference in performance between
the degree-corrected and uncorrected blockmodels, which
is expected since for networks with uniform degrees the
two models have the same likelihood up to an additive
constant. Our primary concern, therefore, is with net-
works that have heterogeneous degree distributions, and
we here give two examples that show the effects of het-
erogeneity clearly.
The first example, widely studied in the field, is the

“karate club” network of Zachary [29]. This is a social
network representing friendship patterns between the 34
members of a karate club at a US university. The club
in question is known to have split into two different fac-
tions as a result of an internal dispute, and the members
of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
of the complete network by many community detection
methods.
Applying our inference algorithms to this network, us-

SBM
leader/follower division

DC-SBM
assortative group division

one important stochastic block model

* Karrer & Newman, Phys. Rev. E 83, 016107 (2011)

https://arxiv.org/abs/1008.3926
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network representing friendship patterns between the 34
members of a karate club at a US university. The club
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tions as a result of an internal dispute, and the members
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that the factions can be extracted from a knowledge
of the complete network by many community detection
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Applying our inference algorithms to this network, us-
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of each faction are known. It has been demonstrated
that the factions can be extracted from a knowledge
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comparing SBM vs. DC-SBM : Zachary karate club

* Peel et al., Science Advances 3, e1602548 (2017)
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leader/follower division

DC-SBM
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stochastic block models

SBM properties
    Erdos-Renyi random graphs

each with size       and internal density

joined pairwise as random bipartite graph with density

degree distribution: mixture of Poissons

diameter:                or

triangle density: low, except when 

local structure: like a random graph

large-scale: mixtures of assortative & disassortative structure
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stochastic block models

DC-SBM properties
    'configuration model' random multi-graphs

each with size      , internal density           and propensities

joined pairwise as random bipartite graph with parameters           and

degree distribution: arbitrary (       )

diameter:                or 

triangle density: low, except when 

local structure: like a random multi-graph

large-scale: mixtures of assortative & disassortative structure
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feature configuration DC SBM real networks

degree 
distribution Poisson specified specified heavy tailed

clustering 
coefficient

social: high
non-social: low

diameter small

large-scale 
structure none none

specified: 
communities, 

hierarchies, etc.

communities, 
dense core, 

hierarchies, etc.

how are we doing?

G(n, p)

O(n�1)

O(lnn) O(lnn)

O(n�1) O(n�1)

O(lnn)
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what patterns do real networks exhibit?

degree distributions:
      heavy-tailed, with enormous diversity across networks and domains

* data from 100 networks from 4 scientific domains, from Index of Complex Networks (ICON); next 2 slides are for a corpus of 410 networks; Ray & Clauset, in prep (2019)



what patterns do real networks exhibit?

mean degree (are networks sparse?):
                  , social networks generally far more dense than other typesO(n↵)
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* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)



what patterns do real networks exhibit?

mean geodesic distance (also, diameter):
                   , but with different coefficients for different domainsO(lnn)
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* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)



what patterns do real networks exhibit?

clustering coefficient:
                    , social networks have                 more triangles at a given 
scale    , but all networks scale down 

O(n�1)
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* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)



what patterns do real networks exhibit?

degree assortativity

increases with scale — esp. in social networks



what patterns do real networks exhibit?

how much of clustering coefficient is due to degree structure?

null models! compare empirical vs. configuration model: C/Co
<latexit sha1_base64="M5VEhqbXOOVrySqLHQhTamvqNe8=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU91tBcVToRePFdy20C4lm2bb0GyyJFmhLP0NXjwo4tUf5M1/Y9ruQVsfDDzem2FmXphwpo3rfjuFjc2t7Z3ibmlv/+DwqHx80tYyVYT6RHKpuiHWlDNBfcMMp91EURyHnHbCSXPud56o0kyKRzNNaBDjkWARI9hYyW9eNQdyUK64VXcBtE68nFQgR2tQ/uoPJUljKgzhWOue5yYmyLAyjHA6K/VTTRNMJnhEe5YKHFMdZItjZ+jCKkMUSWVLGLRQf09kONZ6Goe2M8ZmrFe9ufif10tNdBtkTCSpoYIsF0UpR0ai+edoyBQlhk8twUQxeysiY6wwMTafkg3BW315nbRrVa9erT1cVxp3eRxFOINzuAQPbqAB99ACHwgweIZXeHOE8+K8Ox/L1oKTz5zCHzifPxASjis=</latexit>



what patterns do real networks exhibit?

how much of clustering coefficient is due to degree structure?

      social networks’ higher      is partly explained by their degree distributions
all domains exhibit similar triangle-enrichment across scales (a bit more for bio)

C
<latexit sha1_base64="UPHTPOpODeBVeJmFRF6zih2H3jM=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQfEUyMVjAuYByRJmJ73JmNnZZWZWCCFf4MWDIl79JG/+jZNkD5pY0FBUddPdFSSCa+O6305uY3Nreye/W9jbPzg8Kh6ftHScKoZNFotYdQKqUXCJTcONwE6ikEaBwHYwrs399hMqzWP5YCYJ+hEdSh5yRo2VGrV+seSW3QXIOvEyUoIM9X7xqzeIWRqhNExQrbuemxh/SpXhTOCs0Es1JpSN6RC7lkoaofani0Nn5MIqAxLGypY0ZKH+npjSSOtJFNjOiJqRXvXm4n9eNzXhrT/lMkkNSrZcFKaCmJjMvyYDrpAZMbGEMsXtrYSNqKLM2GwKNgRv9eV10qqUvatypXFdqt5lceThDM7hEjy4gSrcQx2awADhGV7hzXl0Xpx352PZmnOymVP4A+fzB5TLjMM=</latexit>

* data from 410 networks across 4 scientific domains, from Index of Complex Networks (ICON); Ray & Clauset, in prep (2019)



how are we doing?

G(n, p)

O(n�1)

O(lnn) O(lnn)

O(n�1) O(n�1)

O(lnn) O(lnn)

O(n�1)

feature configuration DC SBM real networks

degree 
distribution Poisson specified specified heavy tailed

clustering 
coefficient

diameter

large-scale 
structure none none

specified: 
communities, 

hierarchies, etc.

communities, 
dense core, 

hierarchies, etc.
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• networks are cool!

parting thoughts on networks
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• networks are cool!
but also complicated objects = enormous structural diversity
many ways to describe a network’s structure

• null models & statistical inference
among most powerful tools for describing network structure
highly flexible, scalable, useful
auxiliary data (weights, attributes, time)
applications abound [new ideas often come from these]

• structure + dynamics = function
how does structure constrain dynamics, robustness, etc.
to what degree does structure = function?

parting thoughts on networks



analyzing networks

6 major approaches
1. exploratory data analysis: count & compare all the things (degree 

distributions, centrality scores, community detection, etc.)

2. simple regressions: convert network structure into node-level 
features, and do traditional explanatory modeling

3. null models: use some kind of random graph to identify non-random 
patterns as deviations from the null

4. mechanisms / simulations: explain structural or dynamical patterns as 
caused by specific process

5. predictive models: fit parametric model of network structure & use it 
to predict missing or future data (edges, labels, etc.)

6. network experiments: manipulate structure and measure node-level 
or graph-level behavior as function of changes
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end of lecture 3

networks are



giant component (Erdos-Renyi graph)

let    be fraction of vertices not in giant component

for    not to be in the giant component, then for every 

u

giant component

i

i

j

j

i j

1.    is not connected to   , 
or

2.    connects to   , and    is 
not part of the giant 
component

j

j ji
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giant component (Erdos-Renyi graph)

let    be fraction of vertices not in giant component

for    not to be in the giant component, then for every 

u

i

i

j

j

i j

1.  with probability

2. with probability 

1� p

giant component

pu



giant component (Erdos-Renyi graph)

total probability that    not in giant component via 
any of the           choices of   :

i
jn� 1

u = (1� p+ pu)n�1 =


1� c

n� 1
(1� u)

�n�1

p = c/(n� 1)remember:



total probability that    not in giant component via 
any of the           choices of   :

taking logs of both sides, and approximating:

giant component (Erdos-Renyi graph)

jn� 1

u = (1� p+ pu)n�1 =


1� c

n� 1
(1� u)

�n�1

lnu = (n� 1) ln


1� c

n� 1
(1� u)

�

⇡ �(n� 1)
c

n� 1
(1� u)

= �c(1� u)

ln(1 + x) ⇡ xremember:                        if

i

x ⌧ 1



and the fraction of vertices in the giant component is

eliminating    for    yields the transcendental equation

total probability that   not in giant component via 
any of the           choices of   :

giant component (Erdos-Renyi graph)

i
jn� 1

u = e�c(1�u)

S = 1� u

S = 1� e�c S

Su

[first given by Erdos and Renyi in 1959]
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citation networks

example of a dynamic, growing network model
example of a network mechanistic model
ample data
pleasing narcissistic qualities
long history of study
generally well understood



citation networks

1965

Price’s model:
• papers are published continually               [growing network]
• each paper has bibliography of length        [mean out degree]
• new papers cite previously published only  [directed acyclic graph]
• attachment mechanism: 

c

so long as          has finite variance, the model is well definedPr(c)



citation networks

1965

Price’s model:
• papers are published continually               [growing network]
• each paper has bibliography of length        [mean out degree]
• new papers cite previously published only  [directed acyclic graph]
• attachment mechanism: 

c

so long as          has finite variance, the model is well definedPr(c)

p(j cites some paper i) / ki + a

preferential
attachment

uniform
attachment

preferential attachment = cumulative advantage = the Matthew effect



preferential attachment networks

c = 1

a = 0

* this is a scale-free network, because the term “scale free” refers specifically to a graph with a power-law degree distribution (or tail), which this model produces

n = 50



preferential attachment networks

n = 1000

c = 1

a = 0

* this is a scale-free network, because the term “scale free” refers specifically to a graph with a power-law degree distribution (or tail), which this model produces



degree distribution

exactly solvable in the limit          [originally by Simon 1955]

pk =
B(k + a,↵)

B(a,↵� 1)
↵ = 2 + a/c

see Section 14.1 in Networks: An Introduction



degree distribution

exactly solvable in the limit          [originally by Simon 1955]

recall that

pk =
B(k + a,↵)

B(a,↵� 1)
↵ = 2 + a/c

B(a, b) = �(a)�(b)/�(a+ b)

B(a, b) ⇠ a�b

see Section 14.1 in Networks: An Introduction

(in the tail)



exactly solvable in the limit          [originally by Simon 1955]

recall that

thus, distribution of citations

degree distribution

pk =
B(k + a,↵)

B(a,↵� 1)
↵ = 2 + a/c

B(a, b) = �(a)�(b)/�(a+ b)

B(a, b) ⇠ a�b

see Section 14.1 in Networks: An Introduction

(in the tail)

pk ⇡ (k + a)�↵
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Abstract – Mathematical models of the scientific citation process predict a strong “first-mover”
effect under which the first papers in a field will, essentially regardless of content, receive citations
at a rate enormously higher than papers published later. Moreover papers are expected to retain
this advantage in perpetuity —they should receive more citations indefinitely, no matter how
many other papers are published after them. We test this conjecture against data from a selection
of fields and in several cases find a first-mover effect of a magnitude similar to that predicted by
the theory. Were we wearing our cynical hat today, we might say that the scientist who wants to
become famous is better off —by a wide margin— writing a modest paper in next year’s hottest
field than an outstanding paper in this year’s. On the other hand, there are some later-published
papers, albeit only a small fraction, that buck the trend and attract significantly more citations
than theory predicts. We suggest that papers of this kind, though they often receive relatively few
citations overall, are probably worthy of our attention.

Copyright c© EPLA, 2009

In an influential paper published in 1965, the physicist-
turned-historian-of-science Derek de Solla Price presented
one of the first quantitative studies —perhaps the first—
of patterns of citations between learned papers [1]. His
article, entitled Networks of scientific papers, depicted
papers as the nodes of a network of information, linked
together by the citations between them. He noted a
number of striking features of this network, chief among
them the skewed distribution of citation frequency under
which most papers received only a small number of
citations but there was a “long tail” consisting of a few
papers cited very many times. More specifically he showed
that the fraction pk of papers within his sample that
were cited exactly k times diminished with increasing k
according to a Pareto distribution or power law pk ∼ k−α
with α a constant, a result that has since been confirmed in
other larger studies [2,3]. In the nomenclature of modern
network analysis, the citations between papers form a
scale-free network [4].
In a follow-up paper published a few years later [5],

Price proposed a remarkably simple explanation for this
observation. He suggested that citation was subject to

(a)E-mail: mejn@umich.edu

what he called a cumulative advantage process, whereby
papers that had been cited many times in the past were
more likely to be cited again, resulting in a compound
interest effect under which the best-cited papers became
ever better cited, leaving their less popular counterparts
behind. Price proposed a mathematical model of this
process and solved it to show that indeed it gives rise to
a power law distribution of citation frequencies.
Inspired, among other things, by the distribution of

links between pages on the world wide web, which also
appears to follow a power law, a similar process —now
with the new name of preferential attachment— was inde-
pendently proposed by Barabási and Albert in 1999 [4] and
elaborated upon extensively by a number of authors [6–9].
As a result of this and subsequent work, the mathematics
of preferential attachment and the power law distributions
it produces is now quite well understood.
The preferential-attachment mechanism is qualitatively

plausible in citation networks —one can certainly imagine
that papers cited many times in the past are more likely
to be read and cited again. There is also good empirical
evidence in its favor [10], although there are deviations
from its predictions in some networks [11–13], especially
those that span large periods of time. Overall, however, the
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Fig. 1: (Color online) Statistics of citations to papers about
the theory of networks. Empirical measurements are in brown;
theoretical predictions are in black. (a) Cumulative distribution
of number of citations received by a paper. The best fit to the
theory is achieved for α= 2.28, r= 6.38. (b) Mean number of
citations received by papers as a function of time from the
beginning (t= 0) to the end (t= 1) of the period covered. (c),
(d) and (e): probability that a paper with a given number
of citations is published at time t for papers with (c) 1 or 2
citations, (d) 3 to 5 citations, and (e) 6 to 10 citations.

from its earliest foundation and such data can be hard
to come by.
Figure 1 shows one relatively clean example, a citation

network of papers on network theory —the topic of
this very paper. Within the hard sciences this is a field
of relatively recent provenance, attracting an impressive
volume of research since the late 1990s but almost none
before that. (Its history in the social sciences is much
longer, as Price’s work attests, but cross-citation between
the areas is rare enough as to be negligible —a lucky
feature for our analysis, although an unfortunate one for
the progress of the field.)
Our citation network for this example consists of five

early and well-cited papers in the field [4,7–9,17] along
with all papers that cite them, but excluding review
articles, which tend to have distinctively different citation
patterns, and restricted to papers in physics and related
areas. The resulting data set contains 2407 papers in all
spanning a ten-year period from June 1998 to June 2008.
Figure 1a shows the complete distribution of numbers
of citations to these papers, along with the best fit to
the form (1). As we can see, this two-parameter fit is
remarkably good, and allows us to extract accurate values
for r and α from the data. In fig. 1b, we show the average
number of citations received by papers as a function of
time, where time is measured, as in the model, in terms not
of publication date but of publication order. We also show
the predicted value of the same quantity from eq. (16),
and this is now, effectively, a zero-parameter fit, since
the two parameters appearing in the formula have already
been fixed. Nonetheless, the agreement between data and
theory is again good, and in particular the data show a

clear first-mover effect of a magnitude and duration very
similar to that predicted by the model.
As we mentioned above, the effect is sizable: the first

10% of papers in this example received an average of 101
citations each, while the second 10% —published only
a little later— received just 26. The most recent 10% of
papers in the data set received a miserable 0.08 citations
each, meaning that most of them have never been cited
at all.

Highly cited papers. – We can take our analysis
further. Figure 1c–e shows a detailed comparison of
the actual distribution of citations at different times
against the theoretical predictions. Again the fit is quite
good, although there are some interesting differences
between data and model now visible. In particular, there
are noticeably more papers published at early times in
each citation range than predicted by the theory and
correspondingly fewer around the peak value, meaning
that not all papers in the early period are benefiting from
the first-mover advantage; we hope this is a positive sign
that citation rates are reflecting on paper content at least
to a modest extent. More interestingly perhaps, there are
also a scattering of papers that are cited substantially
more than expected. These are few enough in number as to
be barely visible in the figure, but the number of citations
they receive puts them well outside the expected range.
And this leads us to an interesting possibility. It is

common to assess the importance of papers according
to the number of citations they receive, but the results
presented here suggest that a large part of the variation
in citation numbers is a result of publication date rather
than paper content. If, however, we measure a paper’s
citation count relative to the average in its field for the
given publication date, then this effect is factored out and
—perhaps— the true stars of the citation galaxy will
emerge. The upper panel of fig. 2 shows an analysis of
this kind for our networks data set. For each paper we
plot the number of standard deviations by which its cita-
tion count exceeds the mean for its publication date. By
this measure the “best-cited” papers are roughly evenly
distributed over the ten-year period covered by the data
set, a sign that perhaps the technique is indeed factoring
out effects of timing. Some early seminal works such as
ref. [17], which at 2623 citations is the most cited paper
in the data set, score highly (7.1σ above the mean for its
publication date), but so do some later papers such as
ref. [18] (6.5σ above the mean with 233 citations). And
ref. [19] beats out both of these at 7.2 standard deviations
above the mean even though its relatively recent 2006
publication date means it has received only 63 citations
so far. On the basis of these observations one might
tentatively predict that this paper (and others like it) will
turn out to be influential.
The appearance of well-cited papers relatively late in

the development of a field is an encouraging sign that
true citation patterns do not just mindlessly follow the

68001-p4

• 2407 network science 
papers

• from 1998-2008
• fitted parameters

↵ = 2.28

a = 6.38

pk ⇡ (k + a)�↵



June 2009

EPL, 86 (2009) 68001 www.epljournal.org
doi: 10.1209/0295-5075/86/68001

The first-mover advantage in scientific publication

M. E. J. Newman(a)

Department of Physics, University of Michigan - Ann Arbor, MI 48109, USA and
Santa Fe Institute - 1399 Hyde Park Road, Santa Fe, NM 87501, USA

received 1 May 2009; accepted 28 May 2009
published online 25 June 2009

PACS 89.75.Hc – Networks and genealogical trees
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion
PACS 89.75.Da – Systems obeying scaling laws

Abstract – Mathematical models of the scientific citation process predict a strong “first-mover”
effect under which the first papers in a field will, essentially regardless of content, receive citations
at a rate enormously higher than papers published later. Moreover papers are expected to retain
this advantage in perpetuity —they should receive more citations indefinitely, no matter how
many other papers are published after them. We test this conjecture against data from a selection
of fields and in several cases find a first-mover effect of a magnitude similar to that predicted by
the theory. Were we wearing our cynical hat today, we might say that the scientist who wants to
become famous is better off —by a wide margin— writing a modest paper in next year’s hottest
field than an outstanding paper in this year’s. On the other hand, there are some later-published
papers, albeit only a small fraction, that buck the trend and attract significantly more citations
than theory predicts. We suggest that papers of this kind, though they often receive relatively few
citations overall, are probably worthy of our attention.

Copyright c© EPLA, 2009

In an influential paper published in 1965, the physicist-
turned-historian-of-science Derek de Solla Price presented
one of the first quantitative studies —perhaps the first—
of patterns of citations between learned papers [1]. His
article, entitled Networks of scientific papers, depicted
papers as the nodes of a network of information, linked
together by the citations between them. He noted a
number of striking features of this network, chief among
them the skewed distribution of citation frequency under
which most papers received only a small number of
citations but there was a “long tail” consisting of a few
papers cited very many times. More specifically he showed
that the fraction pk of papers within his sample that
were cited exactly k times diminished with increasing k
according to a Pareto distribution or power law pk ∼ k−α
with α a constant, a result that has since been confirmed in
other larger studies [2,3]. In the nomenclature of modern
network analysis, the citations between papers form a
scale-free network [4].
In a follow-up paper published a few years later [5],

Price proposed a remarkably simple explanation for this
observation. He suggested that citation was subject to

(a)E-mail: mejn@umich.edu

what he called a cumulative advantage process, whereby
papers that had been cited many times in the past were
more likely to be cited again, resulting in a compound
interest effect under which the best-cited papers became
ever better cited, leaving their less popular counterparts
behind. Price proposed a mathematical model of this
process and solved it to show that indeed it gives rise to
a power law distribution of citation frequencies.
Inspired, among other things, by the distribution of

links between pages on the world wide web, which also
appears to follow a power law, a similar process —now
with the new name of preferential attachment— was inde-
pendently proposed by Barabási and Albert in 1999 [4] and
elaborated upon extensively by a number of authors [6–9].
As a result of this and subsequent work, the mathematics
of preferential attachment and the power law distributions
it produces is now quite well understood.
The preferential-attachment mechanism is qualitatively

plausible in citation networks —one can certainly imagine
that papers cited many times in the past are more likely
to be read and cited again. There is also good empirical
evidence in its favor [10], although there are deviations
from its predictions in some networks [11–13], especially
those that span large periods of time. Overall, however, the
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• let     denote time that paper   was published
• new papers only cite older papers
• thus, first-mover effect: 

• Price’s model fully specified by     and 
• idea:
1. estimate them from total citation distribution
2. derive predictions about citation counts vs. age of paper
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Fig. 1: (Color online) Statistics of citations to papers about
the theory of networks. Empirical measurements are in brown;
theoretical predictions are in black. (a) Cumulative distribution
of number of citations received by a paper. The best fit to the
theory is achieved for α= 2.28, r= 6.38. (b) Mean number of
citations received by papers as a function of time from the
beginning (t= 0) to the end (t= 1) of the period covered. (c),
(d) and (e): probability that a paper with a given number
of citations is published at time t for papers with (c) 1 or 2
citations, (d) 3 to 5 citations, and (e) 6 to 10 citations.

from its earliest foundation and such data can be hard
to come by.
Figure 1 shows one relatively clean example, a citation

network of papers on network theory —the topic of
this very paper. Within the hard sciences this is a field
of relatively recent provenance, attracting an impressive
volume of research since the late 1990s but almost none
before that. (Its history in the social sciences is much
longer, as Price’s work attests, but cross-citation between
the areas is rare enough as to be negligible —a lucky
feature for our analysis, although an unfortunate one for
the progress of the field.)
Our citation network for this example consists of five

early and well-cited papers in the field [4,7–9,17] along
with all papers that cite them, but excluding review
articles, which tend to have distinctively different citation
patterns, and restricted to papers in physics and related
areas. The resulting data set contains 2407 papers in all
spanning a ten-year period from June 1998 to June 2008.
Figure 1a shows the complete distribution of numbers
of citations to these papers, along with the best fit to
the form (1). As we can see, this two-parameter fit is
remarkably good, and allows us to extract accurate values
for r and α from the data. In fig. 1b, we show the average
number of citations received by papers as a function of
time, where time is measured, as in the model, in terms not
of publication date but of publication order. We also show
the predicted value of the same quantity from eq. (16),
and this is now, effectively, a zero-parameter fit, since
the two parameters appearing in the formula have already
been fixed. Nonetheless, the agreement between data and
theory is again good, and in particular the data show a

clear first-mover effect of a magnitude and duration very
similar to that predicted by the model.
As we mentioned above, the effect is sizable: the first

10% of papers in this example received an average of 101
citations each, while the second 10% —published only
a little later— received just 26. The most recent 10% of
papers in the data set received a miserable 0.08 citations
each, meaning that most of them have never been cited
at all.

Highly cited papers. – We can take our analysis
further. Figure 1c–e shows a detailed comparison of
the actual distribution of citations at different times
against the theoretical predictions. Again the fit is quite
good, although there are some interesting differences
between data and model now visible. In particular, there
are noticeably more papers published at early times in
each citation range than predicted by the theory and
correspondingly fewer around the peak value, meaning
that not all papers in the early period are benefiting from
the first-mover advantage; we hope this is a positive sign
that citation rates are reflecting on paper content at least
to a modest extent. More interestingly perhaps, there are
also a scattering of papers that are cited substantially
more than expected. These are few enough in number as to
be barely visible in the figure, but the number of citations
they receive puts them well outside the expected range.
And this leads us to an interesting possibility. It is

common to assess the importance of papers according
to the number of citations they receive, but the results
presented here suggest that a large part of the variation
in citation numbers is a result of publication date rather
than paper content. If, however, we measure a paper’s
citation count relative to the average in its field for the
given publication date, then this effect is factored out and
—perhaps— the true stars of the citation galaxy will
emerge. The upper panel of fig. 2 shows an analysis of
this kind for our networks data set. For each paper we
plot the number of standard deviations by which its cita-
tion count exceeds the mean for its publication date. By
this measure the “best-cited” papers are roughly evenly
distributed over the ten-year period covered by the data
set, a sign that perhaps the technique is indeed factoring
out effects of timing. Some early seminal works such as
ref. [17], which at 2623 citations is the most cited paper
in the data set, score highly (7.1σ above the mean for its
publication date), but so do some later papers such as
ref. [18] (6.5σ above the mean with 233 citations). And
ref. [19] beats out both of these at 7.2 standard deviations
above the mean even though its relatively recent 2006
publication date means it has received only 63 citations
so far. On the basis of these observations one might
tentatively predict that this paper (and others like it) will
turn out to be influential.
The appearance of well-cited papers relatively late in

the development of a field is an encouraging sign that
true citation patterns do not just mindlessly follow the
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Fig. 1: (Color online) Statistics of citations to papers about
the theory of networks. Empirical measurements are in brown;
theoretical predictions are in black. (a) Cumulative distribution
of number of citations received by a paper. The best fit to the
theory is achieved for α= 2.28, r= 6.38. (b) Mean number of
citations received by papers as a function of time from the
beginning (t= 0) to the end (t= 1) of the period covered. (c),
(d) and (e): probability that a paper with a given number
of citations is published at time t for papers with (c) 1 or 2
citations, (d) 3 to 5 citations, and (e) 6 to 10 citations.

from its earliest foundation and such data can be hard
to come by.
Figure 1 shows one relatively clean example, a citation

network of papers on network theory —the topic of
this very paper. Within the hard sciences this is a field
of relatively recent provenance, attracting an impressive
volume of research since the late 1990s but almost none
before that. (Its history in the social sciences is much
longer, as Price’s work attests, but cross-citation between
the areas is rare enough as to be negligible —a lucky
feature for our analysis, although an unfortunate one for
the progress of the field.)
Our citation network for this example consists of five

early and well-cited papers in the field [4,7–9,17] along
with all papers that cite them, but excluding review
articles, which tend to have distinctively different citation
patterns, and restricted to papers in physics and related
areas. The resulting data set contains 2407 papers in all
spanning a ten-year period from June 1998 to June 2008.
Figure 1a shows the complete distribution of numbers
of citations to these papers, along with the best fit to
the form (1). As we can see, this two-parameter fit is
remarkably good, and allows us to extract accurate values
for r and α from the data. In fig. 1b, we show the average
number of citations received by papers as a function of
time, where time is measured, as in the model, in terms not
of publication date but of publication order. We also show
the predicted value of the same quantity from eq. (16),
and this is now, effectively, a zero-parameter fit, since
the two parameters appearing in the formula have already
been fixed. Nonetheless, the agreement between data and
theory is again good, and in particular the data show a

clear first-mover effect of a magnitude and duration very
similar to that predicted by the model.
As we mentioned above, the effect is sizable: the first

10% of papers in this example received an average of 101
citations each, while the second 10% —published only
a little later— received just 26. The most recent 10% of
papers in the data set received a miserable 0.08 citations
each, meaning that most of them have never been cited
at all.

Highly cited papers. – We can take our analysis
further. Figure 1c–e shows a detailed comparison of
the actual distribution of citations at different times
against the theoretical predictions. Again the fit is quite
good, although there are some interesting differences
between data and model now visible. In particular, there
are noticeably more papers published at early times in
each citation range than predicted by the theory and
correspondingly fewer around the peak value, meaning
that not all papers in the early period are benefiting from
the first-mover advantage; we hope this is a positive sign
that citation rates are reflecting on paper content at least
to a modest extent. More interestingly perhaps, there are
also a scattering of papers that are cited substantially
more than expected. These are few enough in number as to
be barely visible in the figure, but the number of citations
they receive puts them well outside the expected range.
And this leads us to an interesting possibility. It is

common to assess the importance of papers according
to the number of citations they receive, but the results
presented here suggest that a large part of the variation
in citation numbers is a result of publication date rather
than paper content. If, however, we measure a paper’s
citation count relative to the average in its field for the
given publication date, then this effect is factored out and
—perhaps— the true stars of the citation galaxy will
emerge. The upper panel of fig. 2 shows an analysis of
this kind for our networks data set. For each paper we
plot the number of standard deviations by which its cita-
tion count exceeds the mean for its publication date. By
this measure the “best-cited” papers are roughly evenly
distributed over the ten-year period covered by the data
set, a sign that perhaps the technique is indeed factoring
out effects of timing. Some early seminal works such as
ref. [17], which at 2623 citations is the most cited paper
in the data set, score highly (7.1σ above the mean for its
publication date), but so do some later papers such as
ref. [18] (6.5σ above the mean with 233 citations). And
ref. [19] beats out both of these at 7.2 standard deviations
above the mean even though its relatively recent 2006
publication date means it has received only 63 citations
so far. On the basis of these observations one might
tentatively predict that this paper (and others like it) will
turn out to be influential.
The appearance of well-cited papers relatively late in

the development of a field is an encouraging sign that
true citation patterns do not just mindlessly follow the
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checking the model

110 years of data (July 1893 - June 2003)
3.1 millions citations
330,000 papers with at least one citation
key question: is attachment function         ?

2004

/ ki



checking the model

key question: is attachment function         ?/ ki

4

PR data. A straightforward power-law fit to the data in
the range of 50 – 300 citations gives an exponent of −2.55
for both the PR and ISI data. However, as argued in
Ref. [17] by using a Zipf plot to account for publications
whose citation histories are not yet complete, the expo-
nent of the ISI citation distribution is consistent with the
value −3.

100 101 102 103

number of citations

10−6

10−4

10−2

100

pr
ob

ab
ilit

y

1995
1985
1975
1965
1955
all years

FIG. 3: Normalized citation distributions in selected years.

To check if the nature of the citation distribution is
affected by the growth of PR journals, we plot in Fig. 3
the citation distribution to papers published in selected
years, along with the total citation distribution. We see
that these yearly distributions closely match the total
distribution except at the large-citation tail. There is a
hint that the small-citation tail of the distribution (! 20)
is qualitatively different than the rest of the distribution.
A natural suspicion is that self-citations might play a sig-
nificant role because papers with few citations are likely
to be predominantly self-cited.

IV. THE ATTACHMENT RATE

An important theoretical insight into how scale-free
networks develop was the realization that the rate at
which a new node attaches to a previously-existing node
is an increasing function of the degree of the target node
[13]; this is the mechanism of preferential attachment.
Here, the degree of a node is the number of links that
are attached to the node, or equivalently, the number of
citations to a publication. More precisely, the network
growth is controlled by the rate Ak at which a new node
attaches to a previously-existing node of degree k. In
the context of citations, Ak then gives the rate at which
an existing paper with k citations currently gets cited.
In this section, we study the attachment rate for all PR
publications.

Earlier studies of this attachment rate [22, 32] exam-
ined citation data for 2 years of PRL, both a mathematic
and a neuroscience co-authorship network over 8 years,
a century of data of a network of actor that co-appeared
in all movies, and the Internet from 1997-2001. For the
citation network of PRL and the Internet, linear pref-
erential attachment was observed, while the attachment
rate grew slower than linearly with k for the other exam-
ples. As was first found in [13], an attachment rate that
is linearly proportional to k, Ak ∝ k leads to a power-law
node degree distribution, in which the number of nodes
of degree k, nk, scales as nk ∼ k−ν . In the specific case
where Ak = k, the exponent ν = 3 [13, 18, 19], while for
attachment rates that are asymptotically linear in k, the
degree distribution exponent can be tuned to have any
value in the range (2,∞) [18, 19, 20].
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FIG. 4: The attachment rate Ak for the PR citation data.
Shown are the results when the initial network is based on
citations from 1990-1999 ("), 1980-1999 (!), 1970-1999 ("),
and 1892-1999 (◦). The data has been averaged over 5% of
the total number of data points for each case. The inset shows
the rate for the range of ≤ 150 citations.

For our analysis of the attachment rate, we first con-
struct the degree distribution of the initial network by
taking a specified time window of the initial PR data.
We then specify a second time window during which the
attachment rate is measured. The first window ran from
a specified starting year (see Fig. 4) until 1999, while
the second window was the year 2000. Operationally,
we counted the number of times each paper was cited
from the starting year until 1999 (giving k) and then
counted how many times each such paper was then cited
in 2000. From this data, Ak is proportional to the num-
ber of times a paper with k earlier citations was cited in
2000. As shown in Fig. 4, the qualitative results do not
depend strongly on the starting year. This weak depen-
dence stems from the fact that the total publication rate
in Physical Review has grown so rapidly that the bulk
of the publications and citations are in the last decade.

pretty much.

caveat:
• ensemble only       

(not individual papers)



networks of scientific publications

summary of features

• Price’s model: preferential + uniform attachment
• excellent model of citation networks
• also good model of WWW
• a variation (duplication-mutation) good for gene networks

• not a great model of many other networks
• especially social and spatial networks
• ignores constraints (cost of edges)

• many additional mathematical, empirical results
• see Redner’s, Newman’s, Fortunato’s work

citation networks


