
Random Boolean Networks

Quick Overview

A boolean network is a discrete dynamical system, originally proposed
by Stuart Kauffman as a simple model of a genetic regulatory network
in a living cell, where genes can switch each other on or off. It consists
of a set of N boolean variables, each of which is considered a node in a
directed graph with links from K neighbor nodes, and associated with a
boolean function of arity K. At each time step, the value of each node’s
boolean variable is obtained by evaluating its function with the current
values of its neighbor nodes as arguments. A cellular automaton with
two-state cells is a special kind of boolean network where all the nodes use the same function
and the links are all arranged in a regular bounded integer lattice structure; the Wolfram
elementary cellular automata or the Game of Life are specific examples. In a random boolean
network (RBN), the functions, links, and initial conditions are all randomly generated: the
resulting behavior patterns can be surprisingly regular.

This NetLogo model will help you explore the behavior, orderly or chaotic, of some random
boolean networks.

Learning Targets and Prerequisites

This model is intended to develop in students an understanding of how a complex system with
random parameters can exhibit regular behavior, a phenomenon sometimes called “emergence”.
It also provides an opportunity to explore what is called the “edge of chaos”, where a system can
transition between exhibiting orderly and disorderly behavior. Kaufmann’s 1969 random boolean
networks, and many variations on them, have been to subject of much study and debate within
the systems biology community and beyond. Interpretation and critique of this model is the
subject of several exercises, some of which are rather open-ended. With an accessible interactive
implementation of the ‘classic’ RBN model, experienced students can conduct their own
experiments and create their own variations.

Upon gaining familiarity with this model, students may expect to be able to adequately explain,
in their own words, all the italicized terms in this document, and to answer most of the questions
posed in the exercises. Students are expected to already have some familiarity with binary
numbers and boolean logic.

Essential Concepts

To fully appreciate this model, you will need to be familiar with a small handful of basic
terminology from graph theory, probability, classical logic or boolean algebra, and discrete
dynamics. Although that might sound like a lot, none of it is difficult. Here are some important
vocabulary terms with very brief explanations. For more detailed information, and formal
definitions, please consult the NetLogo code, or a good textbook!

A directed graph is a collection of nodes and directed links, which are ordered pairs of nodes:
each link is from one node and to another. (No self-links are allowed in this particular model.)

By random network, we mean that each node has uniform probability of a link from another
node. If K = 1, then this probability is 1/(N – 1). If K = 2, then the probability is 1/(N – 1)(N – 2),
because we don’t allow multiple links from one node to another. The functions and initial values
of the nodes are, similarly, chosen with uniform probability from all possible functions and
boolean values.

A boolean variable is a variable that can have only two states (or values): on/off, yes/no, 1/0, or
true/false. A boolean function of arity K, where K is a whole number, is just a way to assign a
boolean value to every possible combination of values of K boolean variables, taken in order. A
few examples should help clarify. A unary function (of arity 1) is a way to take one value and
consistently give back another. The variable you take (the argument) can have one of two values,
and you must give back one of two values, so there are four ways to do this:

0 ↦ 0	

 0 ↦ 0	

 0 ↦ 1	

 0 ↦ 1
1 ↦ 0	

 1 ↦ 1	

 1 ↦ 0	

 1 ↦ 1

Each of these four unary boolean functions has a standard name:
“constant 0” 	

 “identity” 	

 “negation” 	

 “constant 1”

For two variables, there are 22 = 4 possible arguments: 00, 01, 10, 11. A binary function (of arity
2) must evaluate each of these to either 0 or 1, so there are 24 = 16 possible binary boolean
functions. Some of these have standard names too, like “AND” or “OR”. In general, there are 22K
boolean functions of arity K.

Because the micro-state (that is, the variable) of each of the nodes has one of two values, the
entire network state, which is just the states of all N nodes together, has one of 2N values. All of
these network states taken together constitute the state space of any particular network, where
the links and function assignments to nodes are fixed. Each network state has only one “next”
state, and so a path or trajectory through the space, from one state to the next, will eventually
reach a cycle of repeating states. However, network states may have more (or less!) than one
“previous” state, so these cycles are the attractors of all their previous states, which are called
the basin of the attractor. States which have no previous states in the space are sometimes called
garden-of-eden states. Attractor cycles of length 1 are called fixed points in the state space. The
number of states on a path between an initial state and a cycle is called the transient time.

Model Mechanism and User Interface

To visualize a random boolean network, we draw all the nodes arranged in a circle and color
them either black (for 1) or white (for 0). The structural parameters of the network are -N-, the
number of nodes in the graph; -K-, the number of links to each node; and -P-, the proportion
(between 0 and 1) of nodes which are initially black. If -P- = 0, all nodes start black, and if -P- =
1, all nodes start white. There is also a switch, label-node-functions? which, when on, labels each
node with a green number corresponding to the node’s boolean function. These numbers are the
decimal representations of the binary numbers formed by putting the function’s value at each of

its possible arguments, in order. For example, the “negation” (or “NOT”) function above has
value 1 at argument 0, and 0 at 1. Lining up these two values, we see 10, which is binary for 2.
So, if -K- = 1 and you see a node labelled “2”, you know it’s performing the NOT function. On
the other hand, if -K- = 2 and the node is labelled “12”, you can write 12 in four-bit binary as
1010, and interpret this as the function (equivalent to NOT b) that evaluates two arguments:

a b
0 0 ↦ 1
0 1 ↦ 0
1 0 ↦ 1
1 1 ↦ 0

Clicking setup will make a new network with the specified parameters. The reset button assigns
new random values to the nodes, clears the plot, and resets the tick counter. It doesn’t change any
of the links, so you can use it to see the behavior of the same network with different initial
conditions. The go once button increments the network state (and the tick counter) by one step:
all nodes first recalculate and then display their new values. The go button does the same but
continuously, until clicked again.

The nodes-in-a-circle picture is helpful for seeing the links (as long as there aren’t too many) but
it doesn’t show the history of the network state over time – its path through the state space. For
this, we make another, smaller picture (labelled “network states over time”) by plotting each
black node as a black dot in a row corresponding to the network state at a particular time. It’s as
if we removed the links from the circle picture and ‘unrolled’ it clockwise from the top, so that
the node at the top of the picture ends up on the far left of the row, and the node just to its left in
the circle ends up on the far right of the row. The next state will be plotted as a new row just
below the current one, so an attractor cycle is visible as a pattern of vertical lines or repeating
dashes. The clear button clears the plot and resets the tick counter, without changing links or
state.

The detect-cycles? switch, when on, causes each newly generated network state to be compared
against all the previous states. If it matches one of these, then a cycle has been detected. The
update process is stopped, and the cycle is highlighted on the network states plot with a red dot
to the right of each network state in the cycle. The length of the cycle is printed in the Command
Center, along with an identifying code: the sum of all the network states (as N-bit binary
numbers) in the cycle. This will let you see which different conditions lead to the same attractors.

You can use the Command Center for calculations, too. Of course NetLogo does boolean logic,
with true and false, so you can evaluate expressions like not (false or true). You can ask any node
(as always, counted clockwise from the top of the picture) its color using, for example, black?
node 3. And you can see all of these boolean values in order by typing net-state. That will give
you a list of true and false values. To read these as 1’s and 0’s, you can type to-binary net-state.
Or to see them as a decimal number, type decode net-state. (If there are more than 53 nodes in
the network then NetLogo, because of its number system, will give you an approximate answer,
which may be somewhat misleading.) These commands should be helpful when you want to
keep track of initial conditions.

(where a and b are taken from the
values of the two nodes with links to
this one, and the node corresponding
to a comes before that of b, counting
clockwise from the top of the picture.)

Exercises

1. Make a new network with N = 10 and K = 1, and set the detect-cycles? switch ‘on’. Record
the cycle and transient lengths for ten different runs of the same network with different initial
states, using the reset button. How many different attractors did you find? Do the same with
K = 2 and K = 3. Now try increasing N. Do you notice any patterns? Can you summarize
your findings?

2. We might wonder how much the behavior of the network will change if its initial state
changes by just a small amount. This is called ‘damage spreading’ or ‘divergence’, and it can
take several forms: for example, we can flip a few bits of the initial state, rewire the inputs of
just a few nodes, or change their functions. With N = 50, your favorite value of K, and P =
0.1, measure the cycle and transient lengths for ten runs. (Setting P = 0.1 means that only
about 10% of nodes will be black when you press reset. If you want exactly five black nodes,
you can set P to 0 and type ask n-of 5 nodes [flip] into the Command Center.) How much did
the behavior change? Now, with the same network, but P = 0, press reset and type export-
world “init.csv” and then ask n-of 5 nodes [pick-random-sources]. Press go, and then type
import-world “init.csv” to recover your initial conditions. Record the attractor data for ten runs
like this from the all-white initial condition. How much variation did you find? Finally,
leaving P = 0, type ask n-of 5 nodes [pick-random-function] and record data from ten runs,
using the import-world command to reset between runs. Which of these three different kinds
of ‘damage’ has the greatest effect on the behavior of the network?

3. One major challenge to the classic RBN model has to do with the update scheme: in 1997,
Harvey and Bossomaier argued that the assumption that all nodes change their values at the
same time was unjustified and unrealistic in the context of genetic regulatory networks. They
introduced a revised model, the ARBN, with an asynchronous update scheme, where nodes
update their states one at a time, in random order. As it happens, this asynchronous update
pattern is built into the NetLogo ask command, and this NetLogo model uses a commonplace
work-around to provide synchronized behavior. Look at the model’s Code tab, and figure out
how to make the update asynchronous (it’s a very simple change). Then try the first exercise
over again. What happened? Do any of your original findings still hold? There’s also a hybrid
model called DARBN (Deterministic Asynchronous RBN) which picks a random order for
the nodes, but then always updates them in that exact order. For a little bit more of a
programming challenge, try modifying the NetLogo model to use this DARBN update rule.
What difference does it make?

4. Another straightforward extension of the model is to restrict the set of functions that the
nodes can have. Part of the reason for doing that is that the constant functions tend to
‘freeze’ parts of the network after a few steps. (Can you explain why?) Modify the NetLogo
code to be able to specify the code numbers of the possible functions. How differently does a
K = 1 RBN with only the identity and negation functions (codes 1 and 2) behave? How about
a K = 2 RBN with only the AND and OR functions (codes 8 and 14)?

5. Adapt the NetLogo model to use the Wattz – Strogatz ‘small-world’ or Barabási – Albert
‘scale-free’ network topologies, which are the subjects of their own Complexity Explorer
lesson modules. In which ways does this affect the behavior of the networks?

Advanced Topics

There are several different named classes of random boolean network, some of which are
discussed above. The model is very general, however. Boolean networks (called ‘switching
circuits’) are essentially the basis for conventional computer architecture, although these
networks are very far from random. Of course, real organisms in their environments are highly
non-random too! For this reason, RBNs under evolutionary selection pressures have been
studied. To get an idea of how this might work, see the Genetic Algorithms lesson modules.

As an abstract model of the genetic regulatory networks which help govern the growth and
maintenance of real organisms, RBNs have both strong and weak points relative to other
modeling methods like systems of ordinary differential equations. They are not intended to be
accurate models of the regulatory mechanisms of any particular organism. However, concepts
developed in their study have proven helpful in the analysis of real genetic regulatory networks.

Much of Kauffman’s original RBN research was focused around findings that for K = 2
networks, the number and lengths of attractor cycles was on average proportional to the square
root of N, just as the number of cell types was believed to be proportional to the square root of
the number of genes. Later work showed that both model and data were based on incomplete
evidence: there are many fewer genes for complex organisms, and many more attractors for
RBNs with high N.

Bibliography

Drossel, B. (2007) Random Boolean Networks. arXiv:0706.3351v2.

Gershenson, C. (2004) Introduction to Random Boolean Networks. arXiv:nlin/0408006v3

Kauffman S, Peterson C, Samuelsson B, Troein C. (2003) Random Boolean network models and
the yeast transcriptional network. Proc Natl Acad Sci U S A. 100(25): pp. 14796-9. http://
www.ncbi.nlm.nih.gov/pubmed/14657375

Kauffman, S. (1969). Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of Theoretical Biology, 22:437-467.

http://arxiv.org/abs/0706.3351v2
http://arxiv.org/abs/0706.3351v2
http://arxiv.org/abs/nlin/0408006v3
http://arxiv.org/abs/nlin/0408006v3
http://www.ncbi.nlm.nih.gov/pubmed/14657375#
http://www.ncbi.nlm.nih.gov/pubmed/14657375#

