Cities as Complex Systems I

Objectives, Phenomena and Scales

CSSS, Santa Fe, June 22, 2023

Luís M. A. Bettencourt

Ecology and Evolution, Sociology and the College Committee of Geographical Sciences University of Chicago External Professor, Santa Fe Institute @BettencourtLuis

bettencourt@uchicago.edu http://luisbettencourt.org

Mansueto Institute for Urban Innovation

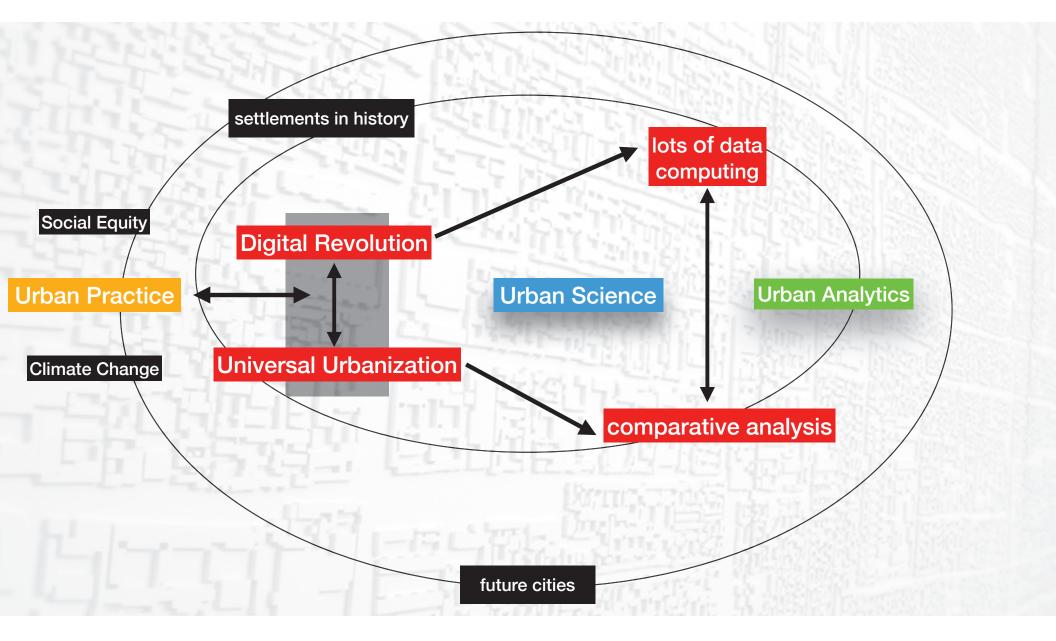
Work of many people

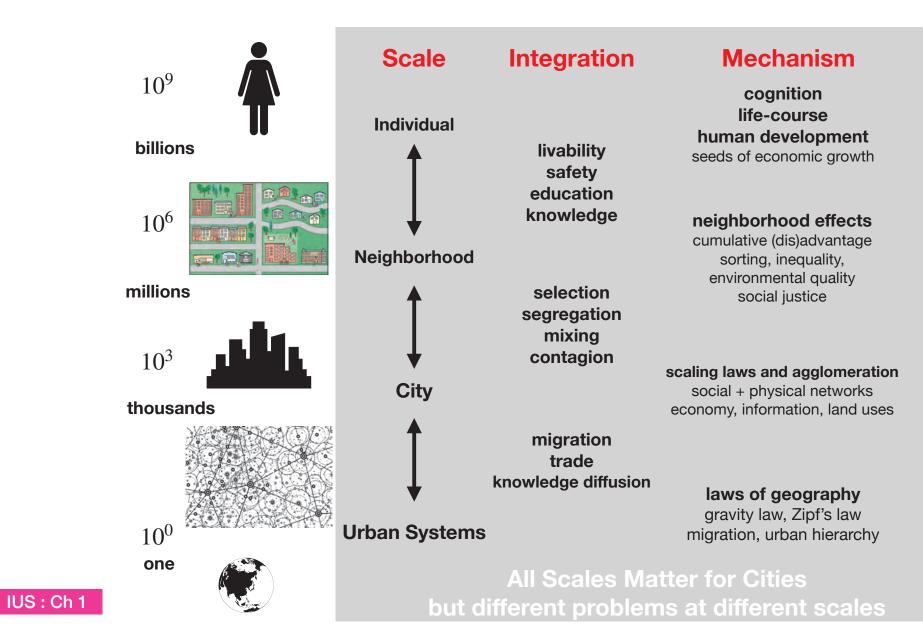
and more ...

CHICAGO Mansueto Institute for Urban Innovation

Our Approach Our People Our Work Contact Us O

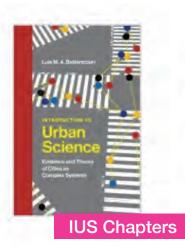
We study the fundamental processes that drive, shape, and sustain cities.


At the Mansueto Institute for Urban Innovation, our researchers come from the social, natural, and computational sciences, along with the humanities. Together, we pursue innovative, interdisciplinary scholarship, develop new educational programs, and provide leadership and evidence to support global, sustainable urban development.


Mlurban.chicago.edu

The problem that drives me:

credit: telegraph



Science: Seek a theoretical framework that can apply throughout history and extrapolate to the future

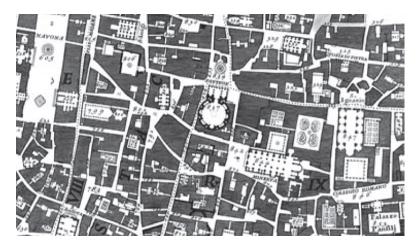
observable, predictive, falsifiable

Introduction to Urban Science

Evidence and Theory of Cities as Complex Systems

Luís M. A. Bettencourt 2021 The MIT Press

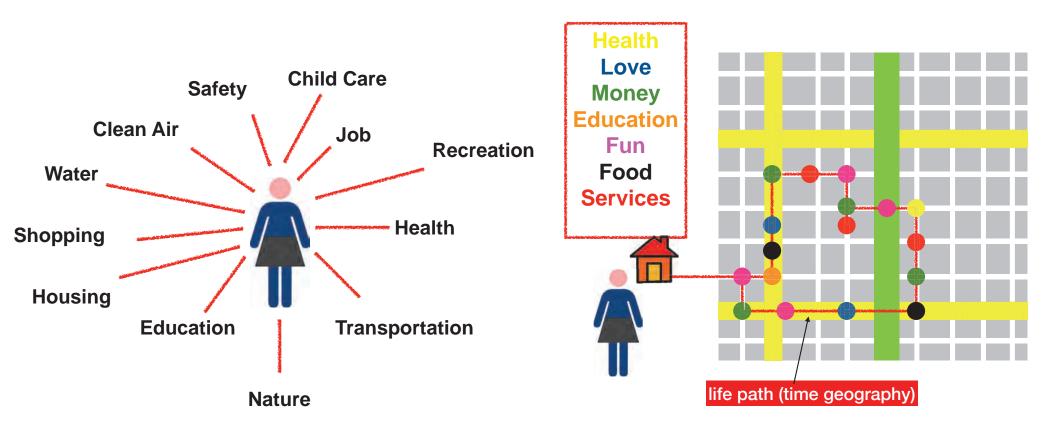
in this talk


A novel, integrative approach to cities as complex adaptive systems, applicable to issues ranging from innovation to economic prosperity to settlement patterns.

https://mitpress.mit.edu/books/introduction-urban-science

People are connected

What are Cities? Complex Networks


A "bound-state" between people, organizations and built spaces

Places are connected

Urban Complexity in a "nutshell"

but this is not how Government Departments think ! Or Research Disciplines !

How are these functions integrated over Time? Space? Economic budgets? Needs of different individuals?

Quantitative Properties of Cities as function of size: Productivity, Invention, energy use, built spaces, heigh buildings, contagion rates, speed of walking, mental health

When a city doubles in size

its economic productivity per capita increases by 15%

Sveikauskas 1975

https://academic.oup.com/qje/article/89/3/393/1896685?login=true

When a city doubles in size its per capita violent crime increases by 16%

Glaeser & Sacerdote 1999

https://www.journals.uchicago.edu/doi/abs/10.1086/250109

Growth, innovation, scaling, and the pace of life in cities

Luís M. A. Bettencourt*¹, José Lobo[‡], Dirk Helbing[§], Christian Kühnert[§], and Geoffrey B. West*¹

*Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545; [‡]Global Institute of Sustainability, Arizona State University, P.O. Box 873211, Tempe, AZ 85287-3211; [§]Institute for Transport and Economics, Dresden University of Technology, Andreas-Schubert-Strasse 23, D-01062 Dresden, Germany; and [§]Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501

Edited by Elinor Ostrom, Indiana University, Bloomington, IN, and approved March 6, 2007 (received for review November 19, 2006)

Humanity has just crossed a major landmark in its history with the majority of people now living in cities. Cities have long been known to be society's predominant engine of innovation and wealth creation, yet they are also its main source of crime, pollution, and disease. The inexorable trend toward urbanization worldwide presents an urgent challenge for developing a predictive. guantitative theory of urban organization and sustainable development. Here we present empirical evidence indicating that the processes relating urbanization to economic development and knowledge creation are very general, being shared by all cities belonging to the same urban system and sustained across different nations and times. Many diverse properties of cities from patent production and personal income to electrical cable length are shown to be power law functions of population size with scaling exponents, B, that fall into distinct universality classes. Quantities reflecting wealth creation and innovation have $\beta \approx 1.2 > 1$ (increasing returns), whereas those accounting for infrastructure display β =0.8 <1 (economies of scale). We predict that the pace of social life in the city increases with population size, in quantitative agreement with data, and we discuss how cities are similar to, and differ from, biological organisms, for which $\beta < 1$. Finally, we explore possible consequences of these scaling relations by deriving growth equations, which quantify the dramatic difference between growth fueled by innovation versus that driven by economies of scale. This difference suggests that, as population grows,

6

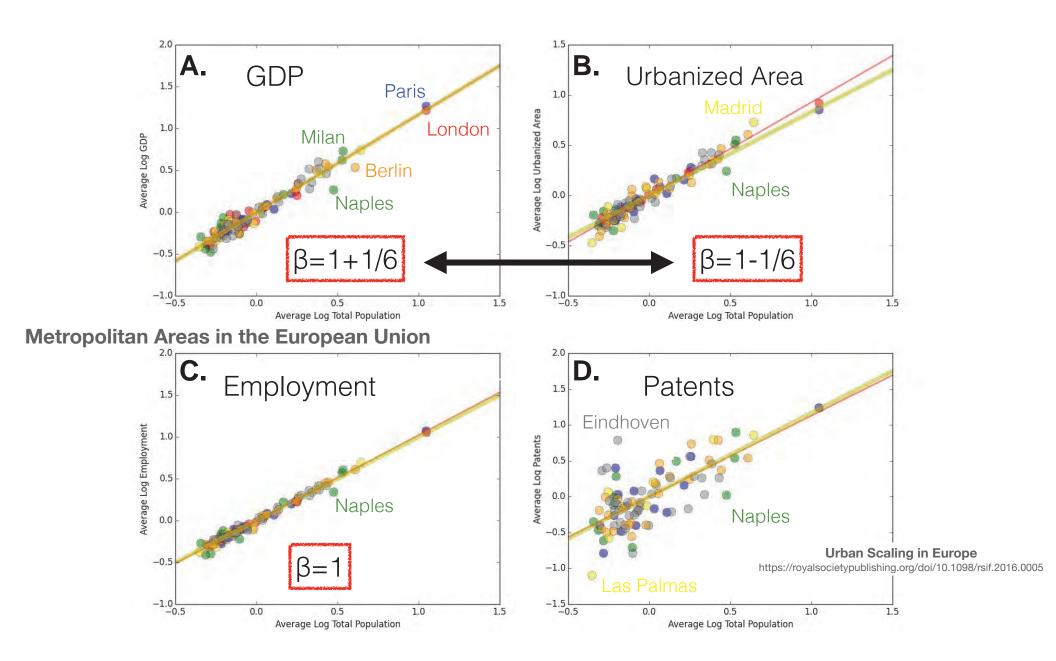
The increasing concentration of people in cities presents both opportunities and challenges (9) toward future scenarios of sustainable development. On the one hand, cities make possible economies of scale in infrastructure (9) and facilitate the optimized delivery of social services, such as education, health care, and efficient governance. Other impacts, however, arise because of human adaptation to urban living (9, 10-14). They can be direct, resulting from obvious changes in land use (3) [e.g., urban heat island effects (15, 16) and increased green house gas emissions (17)] or indirect, following from changes in consumption (18) and human behavior (10-14), already emphasized in classical work by Simmel and Wirth in urban sociology (11, 12) and by Milgram in psychology (13). An important result of urbanization is also an increased division of labor (10) and the growth of occupations geared toward innovation and wealth creation (19-22). The features common to this set of impacts are that they are open-ended and involve permanent adaptation, whereas their environmental implications are ambivalent, aggravating stresses on natural environments in some cases and creating the conditions for sustainable solutions in others (9).

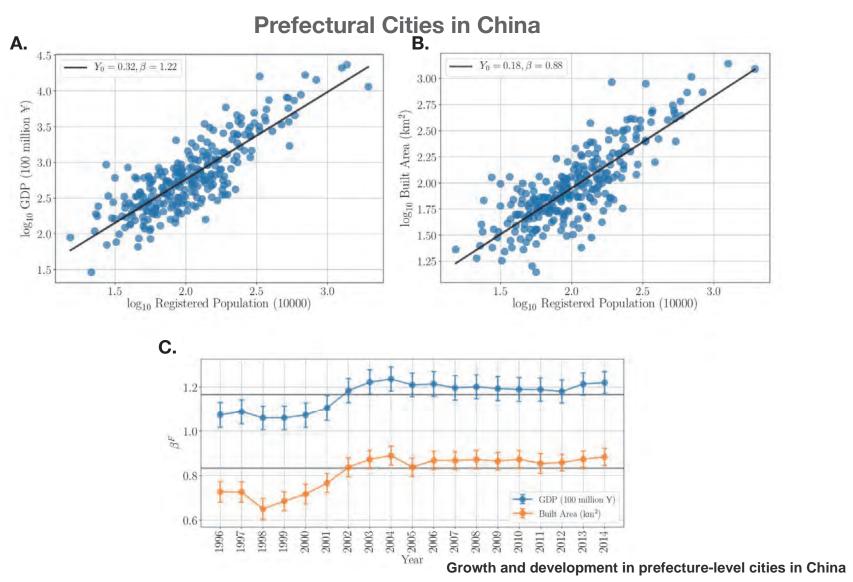
These unfolding complex demographic and social trends make it clear that the quantitative understanding of human social organization and dynamics in cities (7, 9) is a major piece of the puzzle toward navigating successfully a transition to sustainability. However, despite much historical evidence (19, 20) that cities are the principal engines of innovation and economic growth, a

urbanized urbanized $\alpha = 0.66$ $\alpha = 0.66$ α $\alpha = 0.63$ α $\alpha = 0.63$ β $\alpha = 0.63$ $\alpha = 0.63$ β <br< th=""><th>NR $R^2 = 0.87$ [0.65, 0.67] [0.64, 0.66] 0.52 - 0.64 0.56 - 0.59 $R^2 = 0.62$ [0.56, 0.75] NR [0.89, 1.04] [0.75, 0.99] NR [0.38, 1.04] 0.84 - 0.86 $R^2 = 0.74$ $R^2 = 0.84$ [0.74, 0.92] [0.74, 0.92] [0.75, 0.78] [1.11, 1.15]</th><th>412 157 1,800 329 329 4,851 89 368[†] 70 70 51 3,629 119 660 451 29</th><th>USA England and Wales Sweden USA USA USA WIChigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany</th><th>Cities (political) Cities (political) Tätort (urban area) MSA MSA Night-light clusters Cities (political) Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ</th><th>1940 1951 1960 1980-2000 1992, 2000 1992 1960 1969 1981 1981 1981 1966 2000 1990 2005 2006 2002</th><th>(39) (39) (18) (42) (42) (47) (44) (44) (41) (41) (41) (41) (46) (16) (50) (51) Fig. 1A (12)</th></br<>	NR $R^2 = 0.87$ [0.65, 0.67] [0.64, 0.66] 0.52 - 0.64 0.56 - 0.59 $R^2 = 0.62$ [0.56, 0.75] NR [0.89, 1.04] [0.75, 0.99] NR [0.38, 1.04] 0.84 - 0.86 $R^2 = 0.74$ $R^2 = 0.84$ [0.74, 0.92] [0.74, 0.92] [0.75, 0.78] [1.11, 1.15]	412 157 1,800 329 329 4,851 89 368 [†] 70 70 51 3,629 119 660 451 29	USA England and Wales Sweden USA USA USA WIChigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Cities (political) Cities (political) Tätort (urban area) MSA MSA Night-light clusters Cities (political) Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1940 1951 1960 1980-2000 1992, 2000 1992 1960 1969 1981 1981 1981 1966 2000 1990 2005 2006 2002	(39) (39) (18) (42) (42) (47) (44) (44) (41) (41) (41) (41) (46) (16) (50) (51) Fig. 1A (12)
$\begin{array}{rcl} \operatorname{administrative} & \alpha = 0.75 & H \\ \operatorname{urbanized} & \alpha = 0.66 & [\\ \operatorname{urbanized} & \alpha = 0.65 & [\\ \operatorname{urbanized} & \alpha = 0.65 & [\\ \operatorname{urbanized} & \alpha = 0.67 & [\\ \operatorname{developed} & \alpha = 0.57 & 0 \\ \operatorname{light emissions} & \alpha = 0.65 & H \\ \mathbf{Average land area} & \alpha = 0.78 & \\ \operatorname{built area, radial} & \alpha = 0.88 & \\ \operatorname{built area, radial} & \alpha = 0.88 & \\ \operatorname{built area, radial} & \alpha = 0.88 & \\ \operatorname{built area} & \alpha = 0.96 & [\\ \operatorname{built area, radial} & \alpha = 0.87 & \\ \operatorname{built area} & \alpha = 0.96 & \\ \operatorname{built area} & \alpha = 0.96 & \\ \operatorname{built area} & \alpha = 0.75 & \\ \operatorname{built area} & \alpha = 0.87 & \\ \operatorname{built area} & \alpha = 0.88 & \\ \operatorname{area of roads} & \nu = 0.82 & H \\ \operatorname{area of roads} & \nu = 0.82 & \\ \operatorname{area of roads} & \nu = 0.83 & \\ \operatorname{area of roads} & \nu = 0.83 & \\ \operatorname{Average network volume} & \nu = 0.84 & \\ \hline \\ \operatorname{Network length} \\ \operatorname{length of pipes} & \lambda = 0.67 & \\ \operatorname{GDP} & \beta = 1.13 & \\ \operatorname{GDP} & \beta = 1.12 & \\ \\ \operatorname{GDP} & \beta = 1.12 & \\ \\ \operatorname{wages} & \beta = 1.12 & \\ \\ \operatorname{violent crime} & \beta = 1.6 & \\ \operatorname{violent crime} & \beta = 1.20 & \\ \operatorname{new AIDS cases} & \beta = 1.23 & \\ \end{array} \right]$	$\begin{split} R^2 &= 0.87 \\ [0.65,0.67] \\ [0.64,0.66] \\ 0.62-0.64 \\ 0.56-0.59 \\ R^2 &= 0.62 \\ [0.56,0.75] \\ NR \\ [0.89,1.04] \\ [0.75,0.99] \\ NR \\ [0.56,1.04] \\ 0.84-0.86 \\ R^2 &= 0.74 \\ R^2 &= 0.84 \\ R^2 &= 0.84 \\ (0.81,0.89] \\ [0.74,0.92] \\ [0.74,0.92] \\ [0.55,0.78] \end{split}$	157 1,800 329 329 4,851 89 368 [†] 70 70 51 3,629 119 660 451 29	England and Wales Sweden USA USA USA WSA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Cities (political) Tätort (urban area) Tätort (urban area) MSA MSA Night-light clusters Cities (political) Cities (political) Settlements Settlements Urban Areas Cities> 100,000 Agglomerations> 200,000 Urban Areas MSA LUZ	1951 1960 1965 1980-2000 1992, 2000 1992 1960 1969 1981 1981 1981 1966 2000 1990 2005 2006 2002	(39) (18) (18) (42) (42) (47) (44) (40) (41) (41) (41) (41) (46) (50) (51) Fig. 1A (12)
urbanized $\alpha = 0.66$ [urbanized $\alpha = 0.63$ [urbanized $\alpha = 0.63$ [developed $\alpha = 0.63$ [developed $\alpha = 0.67$ [light emissions $\alpha = 0.67$ [Average land area $\alpha = 0.67$ [built area, radial $\alpha = 0.78$ built area, radial $\alpha = 0.87$ built area, radial $\alpha = 0.87$ built area $\alpha = 0.87$ built area $\alpha = 0.87$ built area $\alpha = 0.87$ fumpervious surfaces $\nu = 0.85$ μ area of roads $\nu = 0.82$ area of roads $\nu = 0.82$ Average network volume $\nu = 0.84$ Inget of pipes $\lambda = 0.67$ GDP $\beta = 1.13$ GDP $\beta = 1.22$ GDP $\beta = 1.12$ violent crime $\beta = 1.12$ violent crime $\beta = 1.20$ violent crime $\beta = 1.23$ new AIDS cases $\beta = 1.23$	$\begin{array}{l} [0.65, 0.67] \\ [0.44, 0.66] \\ [0.56, 0.62, -0.64] \\ [0.56, 0.59] \\ R^2 = 0.62 \\ [0.56, 0.75] \\ \hline \\ NR \\ [0.89, 1.04] \\ [0.75, 0.99] \\ NR \\ [0.89, 1.04] \\ [0.75, 0.99] \\ NR \\ [0.84, -0.86] \\ R^2 = 0.74 \\ R^2 = 0.84 \\ R^2 = 0.84 \\ (0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \end{array}$	1,800 1,800 329 329 4,851 89 368 [†] 70 51 3,629 119 660 451 29	Sweden Sweden USA USA USA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Tätort (urban area) Tätort (urban area) MSA MSA Night-light clusters Cities (political) Cities (political) Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1960 1965 1980-2000 1992, 2000 1992 1960 1969 1981 1981 1981 1966 2000 1990 2005 2006 2002	(18) (18) (42) (42) (47) (44) (44) (41) (41) (41) (46) (16) (50) (51) Fig. 1A (12)
urbanized $\alpha = 0.65$ []urbanized $\alpha = 0.63$ α developed $\alpha = 0.65$ Hdeveloped $\alpha = 0.65$ HAverage land area $\alpha = 0.65$ Hbuilt area $\alpha = 0.67$ []built area, radial $\alpha = 0.87$ []hurea, radial $\alpha = 0.87$ []werage land area* $\alpha = 0.85$ []area of roads $\nu = 0.85$ []area of roads $\nu = 0.82$ Harea of roads $\nu = 0.83$ []Average network volume $\nu = 0.84$ []Network length[][]length of pipes $\lambda = 0.67$ []GDP $\beta = 1.13$ []GDP $\beta = 1.12$ []wages $\beta = 1.12$ []violent crime $\beta = 1.20$ []violent crime $\beta = 1.23$ []new AIDS cases $\beta = 1.23$ []	$\begin{bmatrix} 0.64, 0.66 \\ 0.62 - 0.64 \\ 0.56 - 0.59 \\ R^2 = 0.62 \\ [0.56, 0.75] \\ NR \\ I0.75, 0.99] \\ NR \\ [0.75, 0.99] \\ NR \\ [0.56, 1.04] \\ 0.84 - 0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \\ \end{bmatrix}$	1,800 329 329 4,851 89 368 [†] 70 70 51 3,629 119 660 451 29	Sweden USA USA USA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Tätort (urban area) MSA MSA Night-light clusters Cities (political) Cities (political) Settlements Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1965 1980-2000 1992, 2000 1992 1960 1969 1981 1966 2000 1990 2005 2006 2002	(18) (42) (42) (47) (44) (40) (41) (41) (46) (16) (50) (51) Fig. 1A (12)
urbanized $\alpha = 0.63$ $\alpha = 0.57$ developed $\alpha = 0.57$ $\alpha = 0.65$ light emissions $\alpha = 0.65$ B Average land area $\alpha = 0.67$ $\alpha = 0.67$ built area $\alpha = 0.78$ $\alpha = 0.87$ built area, radial $\alpha = 0.88$ $\alpha = 0.87$ built area, radial $\alpha = 0.87$ $\alpha = 0.87$ built area $\alpha = 0.87$ $\alpha = 0.87$ Average land area* $\alpha = 0.87$ $\alpha = 0.85$ Metwork area (or volume)impervious surfaces $\nu = 0.85$ impervious surfaces $\nu = 0.82$ B area of roads $\nu = 0.83$ $[$ Average network volume $\nu = 0.84$ $[$ Network lengthlength of pipes $\lambda = 0.67$ $[$ GDP $\beta = 1.13$ $[$ GDP $\beta = 1.12$ $\beta = 1.12$ $[$ violent crime $\beta = 1.12$ $[$ violent crime $\beta = 1.20$ $[$ new AIDS cases $\beta = 1.23$ $[$	$\begin{array}{c} 0.62 \cdot 0.64\\ 0.56 \cdot 0.59\\ R^2 = 0.62\\ [0.56, 0.75]\\ NR\\ [0.89, 1.04]\\ [0.75, 0.99]\\ NR\\ [0.56, 1.04]\\ 0.84 \cdot 0.86\\ R^2 = 0.74\\ R^2 = 0.84\\ (0.81, 0.89]\\ [0.74, 0.92]\\ [0.74, 0.92]\\ [0.55, 0.78] \end{array}$	329 329 4,851 89 368 [†] 70 70 51 3,629 119 660 451 29	USA USA USA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	MSA MSA Night-light clusters Cities (political) Cities (political) Settlements Settlements Urban Areas Cities> 100,000 Agglomerations> 200,000 Urban Areas MSA LUZ	1980-2000 1992, 2000 1992 1960 1969 1981 1981 1966 2000 1990 2005 2006 2002	(42) (42) (47) (44) (40) (41) (41) (46) (50) (51) Fig. 1A (12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} 0.56\text{-}0.59\\ R^2 = 0.62\\ [0.56, 0.75]\\ \text{NR}\\ \text{NR}\\ [0.89, 1.04]\\ [0.75, 0.99]\\ \text{NR}\\ [0.56, 1.04]\\ 0.84\text{-}0.86\\ R^2 = 0.74\\ R^2 = 0.84\\ (0.81, 0.89)\\ [0.74, 0.92]\\ [0.74, 0.92]\\ [0.55, 0.78] \end{array}$	329 4,851 89 368† 70 70 51 3,629 119 660 451 29	USA USA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	MSA Night-light clusters Cities (political) Settlements Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1992, 2000 1992 1960 1969 1981 1981 1966 2000 1990 2005 2006 2002	(42) (47) (44) (40) (41) (41) (41) (46) (50) (51) Fig. 1A (12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{aligned} R^2 &= 0.62 \\ [0.56, 0.75] \\ & \text{NR} \\ [0.89, 1.04] \\ [0.75, 0.99] \\ & \text{NR} \\ [0.56, 1.04] \\ \\ & 0.84 - 0.86 \\ R^2 &= 0.74 \\ R^2 &= 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \end{aligned}$	4,851 89 368† 70 70 51 3,629 119 660 451 29	USA USA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Night-light clusters Cities (political) Cities (political) Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1992 1960 1969 1981 1981 1966 2000 1990 2005 2006 2002	(47) (44) (40) (41) (41) (46) (16) (50) (51) Fig. 1A (12)
Average land area $\alpha = 0.67$ [1]built area $\alpha = 0.78$ built area, radial $\alpha = 0.88$ built area $\alpha = 0.96$ built area, radial $\alpha = 0.87$ built area, radial $\alpha = 0.87$ built area $\alpha = 0.87$ Average land area* $\alpha = 0.75$ mpervious surfaces $\nu = 0.85$ built area $\nu = 0.85$ area of roads $\nu = 0.82$ area of roads $\nu = 0.83$ Average network volume $\nu = 0.84$ length of pipes $\lambda = 0.67$ GDP $\beta = 1.13$ GDP $\beta = 1.12$ income $\beta = 1.12$ wages $\beta = 1.12$ violent crime $\beta = 1.20$ violent crime $\beta = 1.23$ new AIDS cases $\beta = 1.23$	$\begin{bmatrix} 0.56, 0.75 \end{bmatrix}$ NR NR $\begin{bmatrix} 0.89, 1.04 \end{bmatrix}$ $\begin{bmatrix} 0.75, 0.99 \end{bmatrix}$ NR $\begin{bmatrix} 0.56, 1.04 \end{bmatrix}$ $\begin{bmatrix} 0.84-0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ R^2 = 0.84 \\ \begin{bmatrix} 0.81, 0.89 \end{bmatrix} \\ \begin{bmatrix} 0.74, 0.92 \end{bmatrix} \\ \begin{bmatrix} 0.74, 0.92 \end{bmatrix}$ $\begin{bmatrix} 0.74, 0.92 \end{bmatrix}$ $\begin{bmatrix} 0.55, 0.78 \end{bmatrix}$	89 368 [†] 70 70 51 3,629 119 660 451 29	USA Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Cities (political) Cities (political) Settlements Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1960 1969 1981 1981 1966 2000 1990 2005 2006 2002	(44) (40) (41) (41) (46) (16) (50) (51) Fig. 1A (12)
built area $\alpha = 0.78$ built area, radial $\alpha = 0.88$ built area, radial $\alpha = 0.96$ [] built area radial $\alpha = 0.87$ [] built area $\alpha = 0.87$ [] built area $\alpha = 0.87$ [] built area $\alpha = 0.87$ [] Network area (or volume) impervious surfaces $\nu = 0.85$ [] area of roads $\nu = 0.82$ [] area of roads $\nu = 0.83$ [] Average network volume $\nu = 0.84$ [] Network length length of pipes $\lambda = 0.67$ [] Socioeconomic rates GDP $\beta = 1.13$ [] GDP $\beta = 1.22$ [] GDP $\beta = 1.12$ [] wages $\beta = 1.12$ [] violent crime $\beta = 1.20$ [] violent crime $\beta = 1.20$ [] violent crime $\beta = 1.20$ [] new AIDS cases $\beta = 1.23$ []	$\begin{array}{c} & \text{NR} \\ & \text{NR} \\ [0.89, 1.04] \\ [0.75, 0.99] \\ & \text{NR} \\ [0.56, 1.04] \\ \hline \\ & 0.84-0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.75, 0.78] \end{array}$	368 [†] 70 70 51 3,629 119 660 451 29	Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Cities (political) Settlements Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1969 1981 1981 1966 2000 1990 2005 2006 2002	(40) (41) (41) (46) (50) (51) Fig. 1A (12)
	$\begin{array}{c} {\rm NR} \\ [0.89, 1.04] \\ [0.75, 0.99] \\ {\rm NR} \\ [0.56, 1.04] \\ \\ \hline 0.84-0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ R^2 = 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \end{array}$	368 [†] 70 70 51 3,629 119 660 451 29	Michigan, USA Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Cities (political) Settlements Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1969 1981 1981 1966 2000 1990 2005 2006 2002	(40) (41) (41) (46) (50) (51) Fig. 1A (12)
built area $\alpha = 0.96$ [] built area, radial $\alpha = 0.87$ [] built area $\alpha = 0.87$ [] built area $\alpha = 0.75$ [] Network area (or volume) impervious surfaces $\nu = 0.85$ [] impervious surfaces $\nu = 0.85$ [] area of roads $\nu = 0.83$ [] area of roads $\nu = 0.83$ [] area of roads $\nu = 0.83$ [] Average network volume $\nu = 0.84$ [] Network length [] [] length of pipes $\lambda = 0.67$ [] Socioeconomic rates [] [] GDP $\beta = 1.13$ [] GDP $\beta = 1.12$ [] wages $\beta = 1.12$ [] violent crime $\beta = 1.20$ [] violent crime $\beta = 1.23$ [] new AIDS cases $\beta = 1.23$ []	$\begin{array}{l} [0.89, 1.04] \\ [0.75, 0.99] \\ NR \\ [0.56, 1.04] \\ \hline \\ 0.84-0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \end{array}$	70 70 51 3,629 119 660 451 29	Norfolk, UK Norfolk, UK Ontario, Canada World EU China USA Germany	Settlements Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1981 1981 1966 2000 1990 2005 2006 2002	(41) (41) (41) (46) (50) (51) Fig. 1A (12)
built area, radial $\alpha = 0.87$ [built area $\alpha = 0.87$] Average land area* $\alpha = 0.75$ [Network area (or volume) impervious surfaces $\nu = 0.85$ [built area $\nu = 0.82$] area of roads $\nu = 0.85$ [area of roads $\nu = 0.83$ [Average network volume $\nu = 0.84$ [Network length length of pipes $\lambda = 0.67$ [Socioeconomic rates GDP $\beta = 1.13$ [GDP $\beta = 1.22$ [GDP $\beta = 1.12$ [wages $\beta = 1.12$ [violent crime $\beta = 1.20$ [violent crime $\beta = 1.20$ [new AIDS cases $\beta = 1.23$]	$\begin{bmatrix} 0.75, 0.99 \end{bmatrix}$ NR $\begin{bmatrix} 0.56, 1.04 \end{bmatrix}$ $\begin{bmatrix} 0.84-0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ \begin{bmatrix} 0.81, 0.89 \end{bmatrix} \\ \begin{bmatrix} 0.74, 0.92 \end{bmatrix} \\ \begin{bmatrix} 0.74, 0.92 \end{bmatrix}$ $\begin{bmatrix} 0.55, 0.78 \end{bmatrix}$	70 51 3,629 119 660 451 29	Norfolk, UK Ontario, Canada World EU China USA Germany	Settlements Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1981 1966 2000 1990 2005 2006 2002	(41) (46) (16) (50) (51) Fig. 1A (12)
built area $\alpha = 0.87$ Average land area* $\alpha = 0.75$ Network area (or volume)impervious surfaces $\nu = 0.85$ impervious surfaces $\nu = 0.86$ marea of roads $\nu = 0.82$ area of roads $\nu = 0.83$ area of roads $\nu = 0.83$ Average network volume $\nu = 0.84$ length of pipes $\lambda = 0.67$ Socioeconomic ratesGDPGDP $\beta = 1.13$ GDP $\beta = 1.22$ GDP $\beta = 1.12$ income $\beta = 1.12$ violent crime $\beta = 1.20$ violent crime $\beta = 1.23$ new AIDS cases $\beta = 1.23$	NR [0.56, 1.04] 0.84-0.86 $R^2 = 0.74$ $R^2 = 0.84$ [0.81, 0.89] [0.74, 0.92] [0.74, 0.92] [0.55, 0.78]	51 3,629 119 660 451 29	Ontario, Canada World EU China USA Germany	Urban Areas Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	1966 2000 1990 2005 2006 2002	(16) (50) (51) Fig. 1A (12)
Average land area* $\alpha = 0.75$ [1]Network area (or volume)impervious surfaces $\nu = 0.85$ impervious surfaces $\nu = 0.85$ built area $\nu = 0.82$ area of roads $\nu = 0.83$ area of roads $\nu = 0.83$ area of roads $\nu = 0.84$ built area $\nu = 0.84$ Average network volume $\nu = 0.84$ Ingth of pipes $\lambda = 0.67$ Socioeconomic ratesGDP $\beta = 1.13$ GDP $\beta = 1.12$ GDP $\beta = 1.12$ income $\beta = 1.12$ wages $\beta = 1.12$ violent crime $\beta = 1.20$ violent crime $\beta = 1.20$ new AIDS cases $\beta = 1.23$	$\begin{array}{l} [0.56, 1.04] \\ 0.84 \\ - 0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \end{array}$	3,629 119 660 451 29	World EU China USA Germany	Cities> 100, 000 Agglomerations> 200, 000 Urban Areas MSA LUZ	2000 1990 2005 2006 2002	(16) (50) (51) Fig. 1A (12)
Network area (or volume) impervious surfaces $\nu = 0.85$ ρ impervious surfaces $\nu = 0.86$ F built area $\nu = 0.82$ F area of roads $\nu = 0.83$ $[]$ area of roads $\nu = 0.83$ $[]$ Average network volume $\nu = 0.84$ $[]$ Network length length of pipes $\lambda = 0.67$ $[]$ Socioeconomic rates GDP $\beta = 1.22$ $[]$ GDP $\beta = 1.10$ $[]$ α income $\beta = 1.12$ $[]$ α violent crime $\beta = 1.20$ $[]$ ν violent crime $\beta = 1.20$ $[]$ ν new AIDS cases $\beta = 1.23$ $[]$	$\begin{array}{l} 0.84 \hbox{-} 0.86 \\ R^2 = 0.74 \\ R^2 = 0.84 \\ [0.81, 0.89] \\ [0.74, 0.92] \\ [0.74, 0.92] \\ [0.55, 0.78] \end{array}$	119 660 451 29	EU China USA Germany	Agglomerations> 200, 000 Urban Areas MSA LUZ	1990 2005 2006 2002	(50) (51) Fig. 1A (12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$R^{2} = 0.74$ $R^{2} = 0.84$ $[0.81, 0.89]$ $[0.74, 0.92]$ $[0.74, 0.92]$ $[0.55, 0.78]$	119 660 451 29	EU China USA Germany	Agglomerations> 200, 000 Urban Areas MSA LUZ	1990 2005 2006 2002	(50) (51) Fig. 1A (12)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$R^{2} = 0.74$ $R^{2} = 0.84$ $[0.81, 0.89]$ $[0.74, 0.92]$ $[0.74, 0.92]$ $[0.55, 0.78]$	119 660 451 29	EU China USA Germany	Agglomerations> 200, 000 Urban Areas MSA LUZ	1990 2005 2006 2002	(50) (51) Fig. 1A (12)
$\begin{array}{cccc} & \mu = 0.86 & \mu \\ & \text{built area} & \nu = 0.82 & \mu \\ & \text{area of roads} & \nu = 0.83 & \mu \\ & \text{area of roads} & \nu = 0.83 & \mu \\ & \text{area of roads} & \nu = 0.83 & \mu \\ & \text{Average network volume} & \nu = 0.84 & \mu \\ \hline & \text{Network length} & \mu \\ & \text{length of pipes} & \lambda = 0.67 & \mu \\ & \text{Socioeconomic rates} & & \\ & \text{GDP} & \beta = 1.13 & \mu \\ & \text{GDP} & \beta = 1.22 & \mu \\ & \text{GDP} & \beta = 1.12 & \mu \\ & \text{income} & \beta = 1.12 & \mu \\ & \text{wages} & \beta = 1.12 & \mu \\ & \text{violent crime} & \beta = 1.20 & \mu \\ & \text{violent crime} & \beta = 1.20 & \mu \\ & \text{violent crime} & \beta = 1.20 & \mu \\ & \text{violent crime} & \beta = 1.23 & \mu \\ & other area of the second $	$R^{2} = 0.74$ $R^{2} = 0.84$ $[0.81, 0.89]$ $[0.74, 0.92]$ $[0.74, 0.92]$ $[0.55, 0.78]$	119 660 451 29	EU China USA Germany	Agglomerations> 200, 000 Urban Areas MSA LUZ	1990 2005 2006 2002	(50) (51) Fig. 1A (12)
built area $\nu = 0.82$ F area of roads $\nu = 0.83$ []area of roads $\nu = 0.83$ []area of roads $\nu = 0.83$ []Average network volume $\nu = 0.84$ []Network length length of pipes $\lambda = 0.67$ []Socioeconomic ratesGDP $\beta = 1.13$ []GDP $\beta = 1.22$ []GDP $\beta = 1.10$ []income $\beta = 1.12$ []wages $\beta = 1.12$ []violent crime $\beta = 1.20$ []violent crime $\beta = 1.20$ []new AIDS cases $\beta = 1.23$ []	$R^{2} = 0.84$ [0.81,0.89] [0.74,0.92] [0.74,0.92] [0.55,0.78]	660 451 29	China USA Germany	Urban Areas MSA LUZ	2005 2006 2002	(51) Fig. 1A (12)
$\begin{array}{cccc} \mbox{area of roads} & \nu = 0.85 & [\\ \mbox{area of roads} & \nu = 0.83 & [\\ \mbox{Average network volume} & \nu = 0.84 & [\\ \mbox{Network length} & \\ \mbox{length of pipes} & \lambda = 0.67 & [\\ \mbox{Socioeconomic rates} & \\ \mbox{GDP} & \beta = 1.13 & [\\ \mbox{GDP} & \beta = 1.22 & [\\ \mbox{GDP} & \beta = 1.12 & [\\ \mbox{income} & \beta = 1.12 & [\\ \mbox{wages} & \beta = 1.12 & [\\ \mbox{violent crime} & \beta = 1.6 & [\\ \mbox{violent crime} & \beta = 1.20 & [\\ \mbox{violent crime} & \beta = 1.20 & [\\ \mbox{violent crime} & \beta = 1.20 & [\\ \mbox{violent crime} & \beta = 1.20 & [\\ \mbox{violent crime} & \beta = 1.23 & [\\ $	[0.81,0.89] [0.74,0.92] [0.74,0.92] [0.55,0.78]	451 29	USA Germany	MSA LUZ	2006 2002	Fig. 1A (12)
area of roads $\nu = 0.83$ $\nu = 0.84$ Average network volume $\nu = 0.84$ $\nu = 0.84$ Network length length of pipes $\lambda = 0.67$ $\mu = 0.67$ Socioeconomic rates $\beta = 1.13$ $\beta = 0.67$ GDP $\beta = 1.22$ $\beta = 0.22$ GDP $\beta = 1.12$ $\beta = 0.12$ income $\beta = 1.12$ vages $\beta = 1.12$ violent crime $\beta = 1.12$ violent crime $\beta = 1.20$ violent crime $\beta = 1.20$ new AIDS cases $\beta = 1.23$	[0.74,0.92] [0.74,0.92] [0.55,0.78]	29	Germany	LUZ	2002	(12)
Average network volume $\nu = 0.84$ $\nu = 0.84$ $\nu = 0.84$ Network length length of pipes $\lambda = 0.67$ $\mu = 0.67$ <t< td=""><td>[0.74,0.92] [0.55,0.78]</td><td></td><td>-</td><td></td><td></td><td></td></t<>	[0.74,0.92] [0.55,0.78]		-			
$\begin{array}{c} \text{length of pipes} & \lambda = 0.67 \end{array} \left[\begin{array}{c} \\ \textbf{Socioeconomic rates} \\ & \text{GDP} & \beta = 1.13 \\ & \text{GDP} & \beta = 1.22 \\ & \text{GDP} & \beta = 1.22 \\ & \text{income} & \beta = 1.10 \\ & \text{income} & \beta = 1.12 \\ & \text{wages} & \beta = 1.12 \\ & \text{wages} & \beta = 1.12 \\ & \text{violent crime} & \beta = 1.20 \\ & \text{violent crime} & \beta = 1.20 \\ & \text{violent crime} & \beta = 1.23 \\ & \text{new AIDS cases} & \beta = 1.23 \\ \end{array} \right]$		12	Japan	МА	2005	Fig. S1
$\begin{array}{c} \text{length of pipes} & \lambda = 0.67 \end{array} \left[\begin{array}{c} \\ \textbf{Socioeconomic rates} \\ & \text{GDP} & \beta = 1.13 \\ & \text{GDP} & \beta = 1.22 \\ & \text{GDP} & \beta = 1.22 \\ & \text{income} & \beta = 1.10 \\ & \text{income} & \beta = 1.12 \\ & \text{wages} & \beta = 1.12 \\ & \text{wages} & \beta = 1.12 \\ & \text{violent crime} & \beta = 1.20 \\ & \text{violent crime} & \beta = 1.20 \\ & \text{violent crime} & \beta = 1.23 \\ & \text{new AIDS cases} & \beta = 1.23 \\ \end{array} \right]$		12	Japan	MA	2005	Fig. S1
$ \begin{array}{ccc} \text{GDP} & \beta = 1.13 & [\\ \text{GDP} & \beta = 1.22 & [\\ \text{GDP} & \beta = 1.22 & [\\ \text{GDP} & \beta = 1.10 & [\\ \text{income} & \beta = 1.12 & [\\ \text{wages} & \beta = 1.12 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{new AIDS cases} & \beta = 1.23 & [\\ \end{array} $	[1 11 1 15]					
$\begin{array}{ccc} \text{GDP} & \beta = 1.13 & [\\ \text{GDP} & \beta = 1.22 & [\\ \text{GDP} & \beta = 1.22 & [\\ \text{GDP} & \beta = 1.10 & [\\ \text{income} & \beta = 1.12 & [\\ \text{wages} & \beta = 1.12 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{new AIDS cases} & \beta = 1.23 & [\end{array}$	[1 11 1 15]					
$ \begin{array}{c} \text{GDP} & \beta = 1.22 & \text{GDP} \\ \text{GDP} & \beta = 1.10 & [\\ \text{income} & \beta = 1.12 & [\\ \text{wages} & \beta = 1.12 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{new AIDS cases} & \beta = 1.23 & [\\ \end{array} $		363	USA	MSA	2006	Fig.1B,(12)
$ \begin{array}{c} \text{GDP} & \beta = 1.10 & [\\ \text{income} & \beta = 1.12 & [\\ \text{wages} & \beta = 1.12 & [\\ \text{violent crime} & \beta = 1.16 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{violent crime} & \beta = 1.20 & [\\ \text{new AIDS cases} & \beta = 1.23 & [\\ \end{array} $	[1.11,1.33]	273	China	Prefectural Cities	2005	Fig. S2A
$ \begin{array}{c} \text{income} \\ \text{wages} \\ \end{array} \begin{array}{c} \beta = 1.12 \\ \beta = 1.12 \\ \end{array} \begin{bmatrix} \\ \beta \\$	[1.01,1.18]	35	Germany	LUZ	2003	Fig. S2B
wages $\beta = 1.12$ β violent crime $\beta = 1.16$ β violent crime $\beta = 1.20$ β violent crime $\beta = 1.20$ β new AIDS cases $\beta = 1.23$ β	[1.07,1.17]	12	Japan	MA	2004	Fig. S1A
violent crime $\beta = 1.16$ [violent crime $\beta = 1.20$ [violent crime $\beta = 1.20$ [new AIDS cases $\beta = 1.23$ [363	USA	MA MSA	1969-2009	Fig. S1A
violent crime $\beta = 1.20$ β violent crime $\beta = 1.20$ β new AIDS cases $\beta = 1.23$ β	[1.07,1.17]	303	USA	MSA	1909-2009	Fig. 35
violent crime $\beta = 1.20$ β new AIDS cases $\beta = 1.23$ β	[1.11,1.19]	287	USA	MSA	2003	(12)
new AIDS cases $\beta = 1.23$ [[1.07,1.33]	12	Japan	MA	2008	(62)
	[1.15,1.25]	27; 5,570	Brazil	MA; Municipios	2003-07	(25), (62)
new patents $\beta = 1.27$ [[1.17,1.29]	93	USA	MSA	2002-3	(12)
	[1.22,1.32]	331	USA	MSA	1980-2001	(11, 12)
supercreative jobs $\beta = 1.15$ [[1.13,1.17]	331	USA	MSA	1999-2001	(11)
1 5 7	[1.12,1.26]	227-278	USA	MSA	1987-2002	(11)
	[1.01,1.33]					
Social interactions						
	[1.00,1.25]	415	Portugal	Cities, LUZ, Municipality	2006-7	(21)
	[1.05,1.17]	24	UK	Cities	2005	(21)
· · · ·	[1.00,1.25]					()
Power dissipation						
		380	Germany	Cities	2002	(12)
Average land rents	[1.05, 1.17]					
median house value $\delta_L = 0.49$ [[1.05, 1.17]					

National Urban Systems: USA **European Union** Brazil South Africa Japan China India . . . **Settlements in History: Aztecs** Inca Southwest Pueblo Maya Roman Empire Medieval Europe 19th Century England

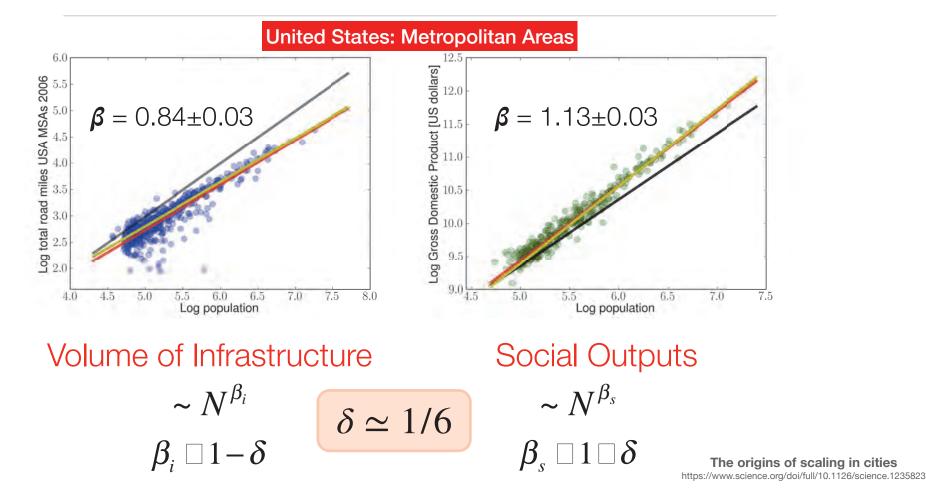
Breaks down in:

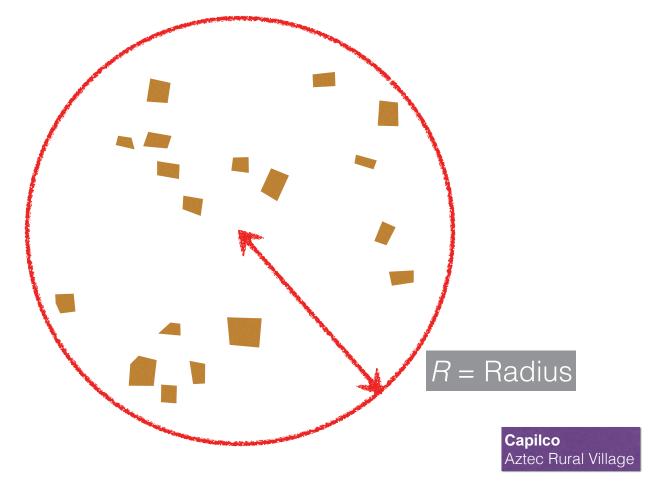

- Hunter/Gatherer Camps
- Slums (informal settlements)
- Shrinking Cities


NR=not reported. Error, in order of availability from the source, is given by: 95% confidence intervals (square brackets), ranges, or R^2 values. Note: Average quantities are the simple (unweighted) averages across rows. Corresponding error intervals are the union of those from individual studies.

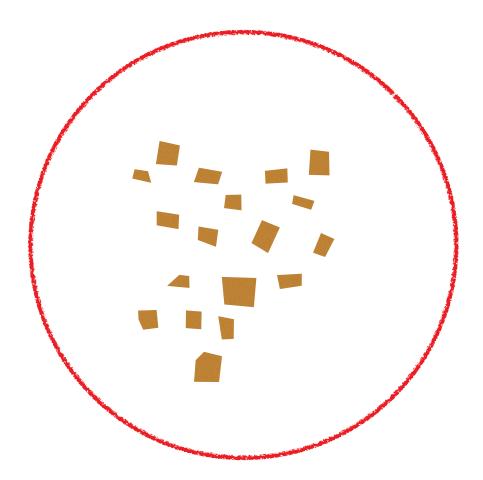
* This estimate of Average land area includes all 12 rows above, it mixes explicit measurements of built area with others.

[†] This estimate was obtained by the author through visual inspection of Fig. 1 in Ref. (39).

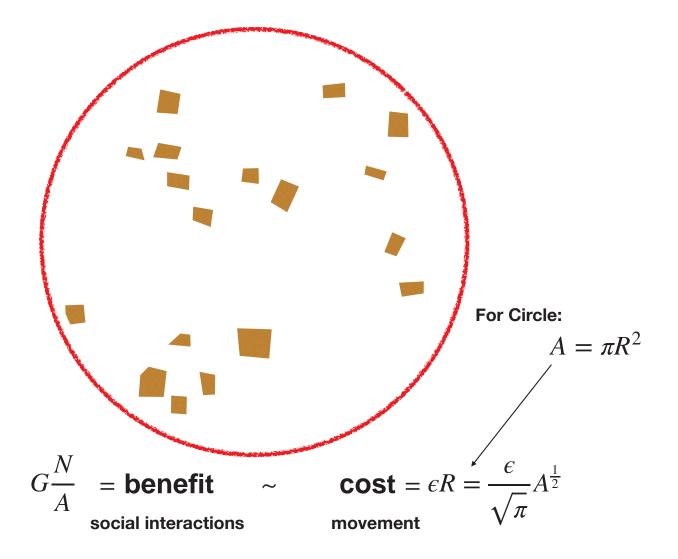

https://www.science.org/doi/10.1126/science.1235823



https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0221017


Infrastructure & socioeconomic rates

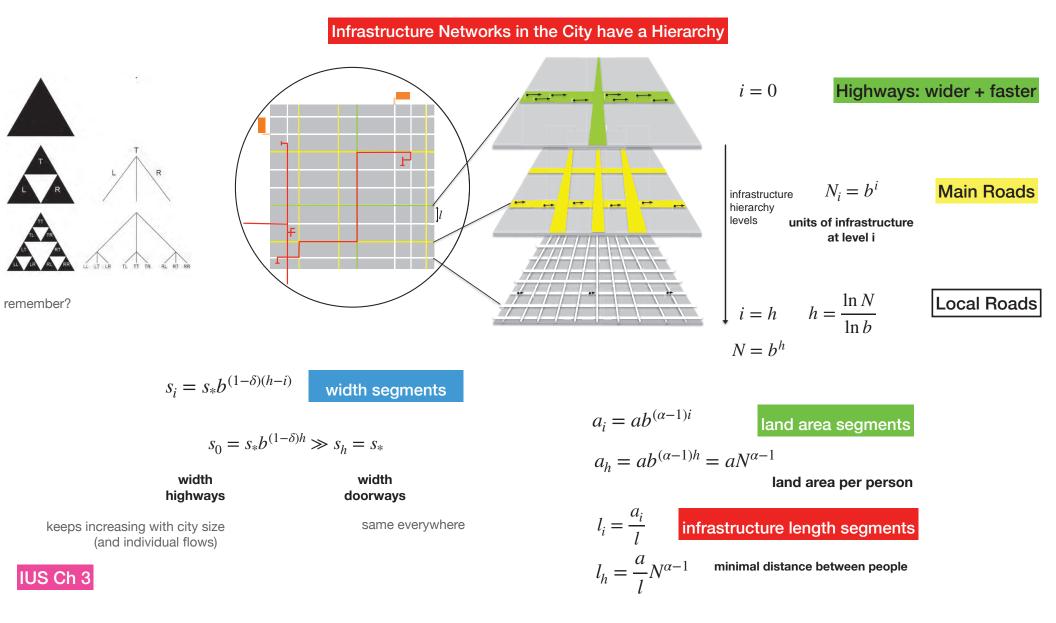
The Simplest Model of Settlement Scaling: "The Amorphous Settlement"


The origins of scaling in cities https://www.science.org/doi/full/10.1126/science.1235823

The origins of scaling in cities https://www.science.org/doi/full/10.1126/science.1235823

The origins of scaling in cities https://www.science.org/doi/full/10.1126/science.1235823

This gets us two good things:


"City" Area:
$$A(N) = \left(\frac{\sqrt{\pi}G}{\epsilon}\right)^{\frac{2}{3}} N^{\frac{2}{3}}$$
 sublinear
Total
Socioeconomic
Outputs: $Y(N) = G\frac{N^2}{A} = \left(\frac{G^{\frac{1}{2}}\epsilon}{\sqrt{\pi}}\right)^{\frac{2}{3}} N^{\frac{4}{3}}$ superlinear
The origins of scaling in cities
https://www.science.org/doi/tul/10.1128/science.1235823
The origins of scaling in cities
https://www.science.org/doi/tul/10.1128/science.1235823

To derive exponents observed in modern cities need to understand hierarchical complex nature of built environments

People interacting over the built environment: fast (people, ~days) and slow (infrastructure, ~decade) time scales

note now that spaces are structured, not amorphous: we need to understand the nature of their networks

The Cost of Socializing in the City

Conservation of Current across infrastructural levels

 $J_{i} = s_{i}\rho_{i}v_{i}N_{i} = s_{i-1}\rho_{i-1}v_{i-1}N_{i-1} = J_{i-1}$ $\rho_{0}v_{0} \gg \rho_{h}v_{h}$ highways
doorways
faster and more densely packed the same everywhere

$$J_i = J = J_0 N$$
, with $J_0 = s_* \rho_* v_*$

Resistance accounts for Cost of Movement:

$$r_i = r \frac{l_i}{s_i} \qquad \qquad R_i = \frac{r_i}{N_i} = \frac{ar}{ls_*} b^{-(1-\alpha+\delta)i-(1-\delta)h}$$

Parallel resistance because flow can take alternate routes (decentralized networks)

$$W = J^{2} \sum_{i=1}^{h} R_{i} = J^{2} \frac{ar}{ls_{*}} b^{-(1-\delta)h} \frac{1-b^{-(1-\alpha+\delta)(h+1)}}{1-b^{-1+\alpha-\delta}} \simeq W_{0} N^{1+\delta}, \quad W_{0} = \frac{ar J_{0}^{2}}{ls_{*}(1-b^{-1+\alpha-\delta})},$$
Cost of Transportation scales super linearly
like Social Benefits $!! \to$ Spatial Equilibrium independent of City population size

Implications:

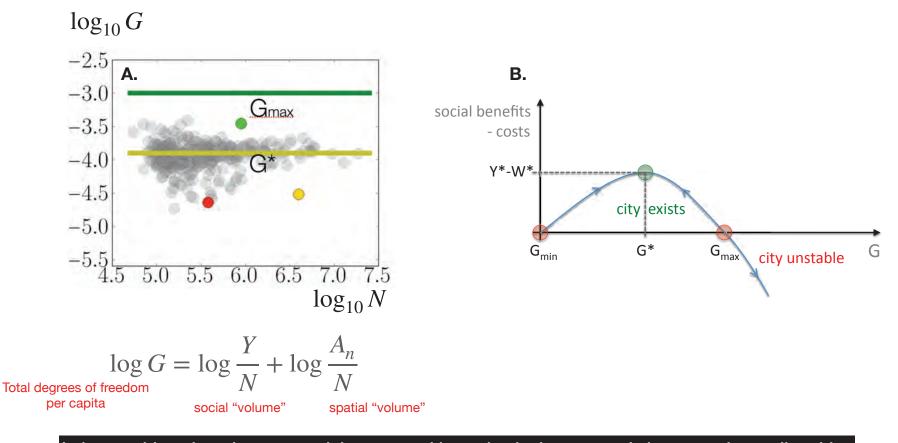
Many quantitative predictions + general consequences

Urban scaling relation	Exponent prediction $D = 2, H_m = 1$	Exponent prediction General <i>D</i> , <i>H</i> _m	_
Land area $A = a N^{\alpha}$	$\alpha = 2/3$	$\alpha = \frac{D}{D + H_m}$	->
Network volume $A_n = A_0 N^{\nu}$	$\nu = 5/6$	$\nu = 1 - \delta$	
Network Length $L_n = L_0 N^{\lambda}$	$\lambda = 2/3$	$\lambda = \alpha$	Number of Professions COVID-19 Transmissibility Cost of Housing
Interactions/capita $k = k_0 N^{\delta}$	$\delta = 1/6$	$\delta = \frac{H}{D(D+H_m)}$	Congestion Costs Building Height and Shape Information Infrastructure
Social outputs $Y = Y_0 N^{\beta}$	$\beta = 7/6$	$\beta = 1 + \delta$	Water Consumption Fractal Dimension of Land Use
Power dissipation $W = W_0 N^{\omega}$	$\omega = 7/6$	$\omega = 1 + \delta$	
Land rents (\$ $/m^2$) $P_L = P_0 N^{\beta_L}$	$\beta_L = 4/3$	$eta_L = 1 + 2 \delta$	

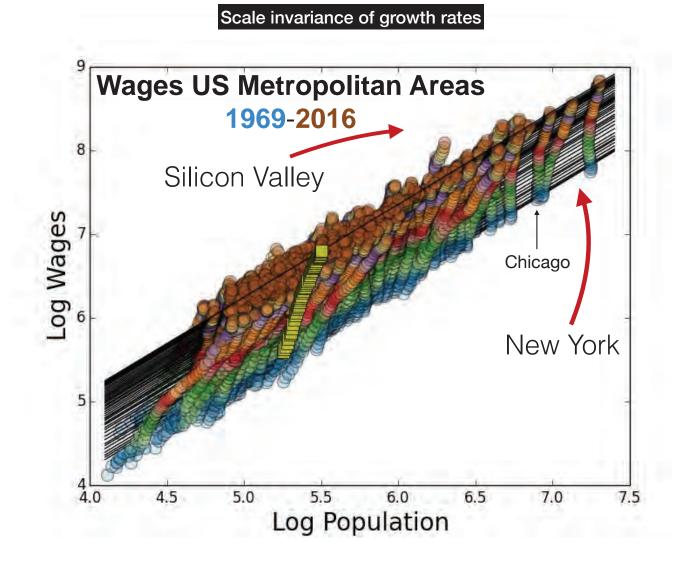
Summary of Urban Scaling relations and exponent predictions for various important quantities. Note that agglomeration effects vanish when $H_m \rightarrow 0$ because then people remain spatially separated social networks fail to emerge (we will look at internet quantities later).

Spatial equilibrium between social benefits and costs

Real "Income": Y(N) - W(N)social benefits: $Y(N) \sim G \frac{N^2}{A_n(N)} \sim N^{7/6}$ social benefits - costs - COSTS: $W(N) \sim W_0 \frac{I^2}{A_n(N)} \sim N^{7/6}$ Y*-W* city exists G_{max} G* G G_{min} city unstable $Y_0 \sim G^{1-lpha} ext{ and } W_0 \sim G^{lpha}$ High Costs/Dispersion Congestion/Danger calculation in IUS pp 88-89 ~"Florida"


cities can exist at "any" population size: scale-invariance

Poor, congested, intense, dangerous


~Lagos

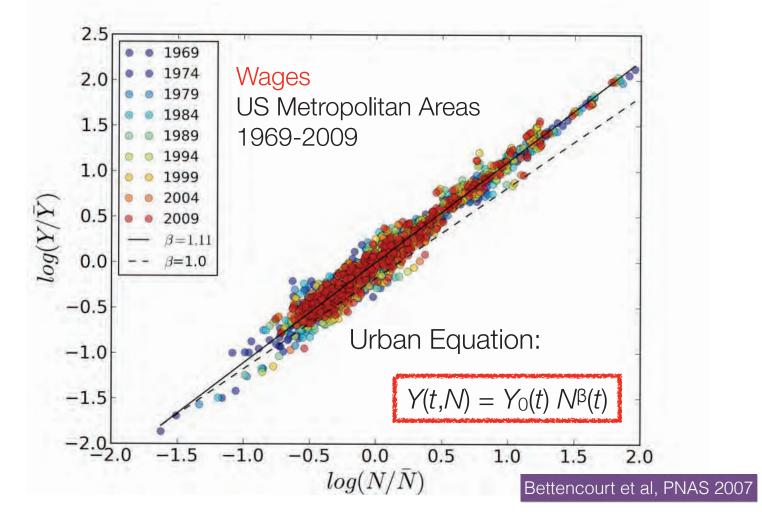
Diffuse, sprawling, uneventful

Scale invariance of degrees of freedom per capita

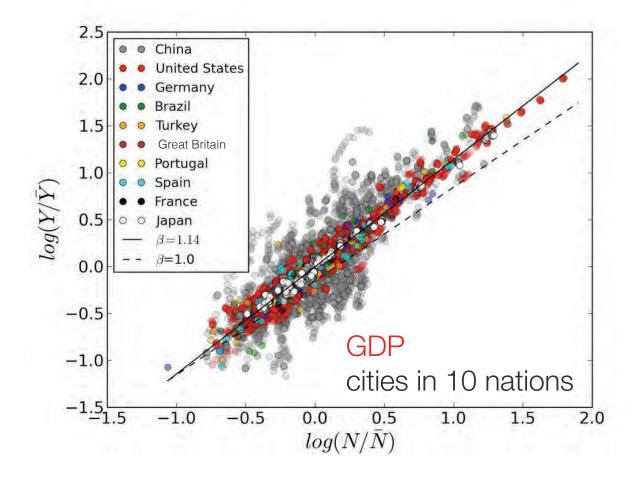
In larger cities, there is more social space and less physical space and vice-versa in smaller cities

Renormalization of Mean-Field Scaling Exponents from Weak Scale Dependence

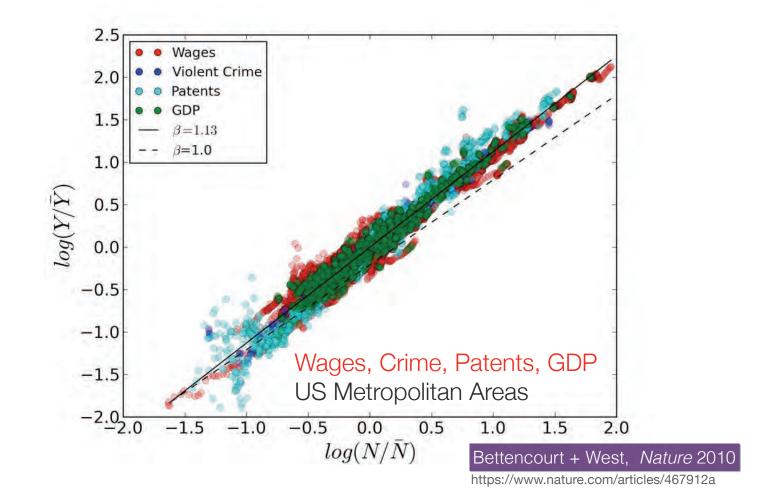
$$R_{i}(t) \rightarrow R_{i}(0)e^{\gamma_{i}t} \simeq Y_{0}(0)N_{i}(0)^{\beta+\bar{B}_{i}t}e^{\gamma^{(0)}t}$$

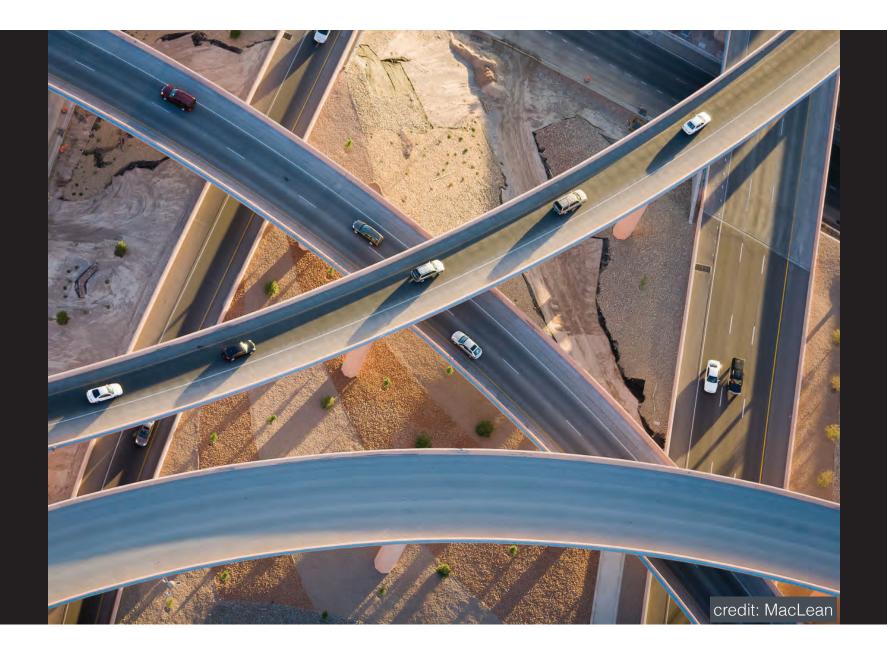

$$B_{i}(\ln N_{i}) = \frac{d\gamma_{i}}{d\ln N_{i}} \rightarrow \gamma_{i}(t) = \int B_{i}d\ln N_{i} \simeq \gamma^{(0)} + \bar{B}_{i}\ln N_{i} + \dots$$
rupping of scaling exponents

running of scaling exponents

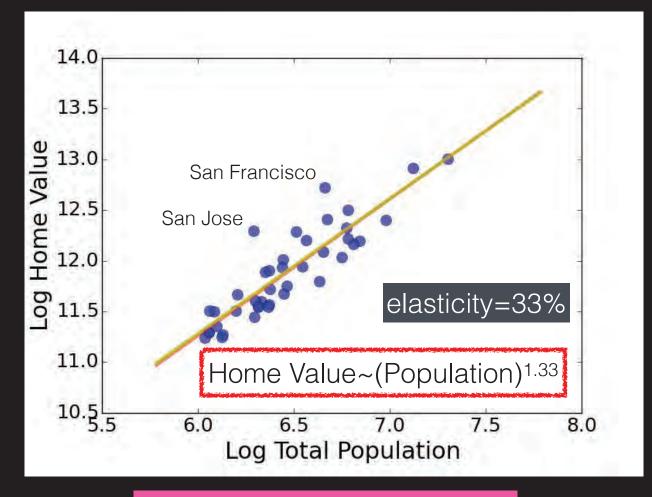

$$B_i(\ln N_i) = -\frac{1}{2} \frac{d\sigma_i^2}{d\ln N_i}$$

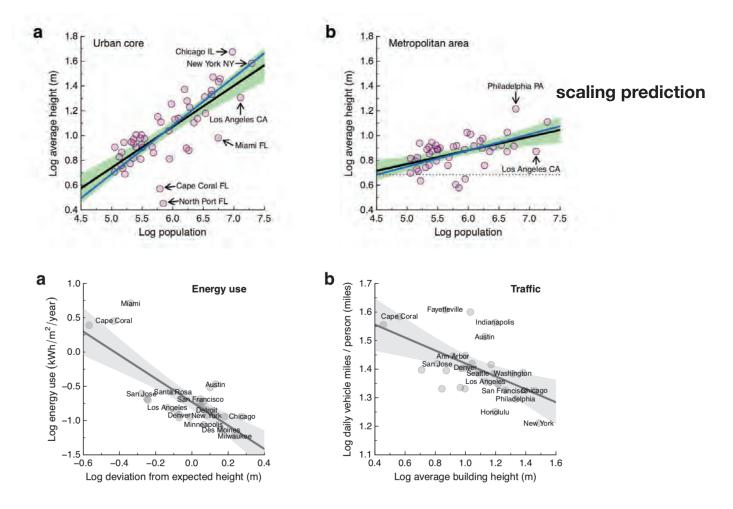
corrections from scale dependent of volatilities, exponents "run"


A law in time ...


A law in across nations ...

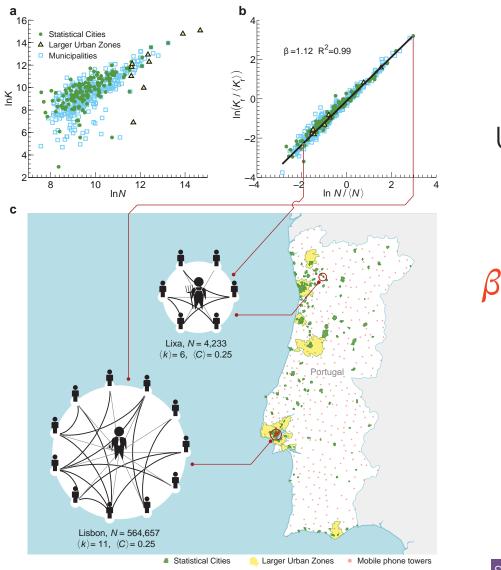
A law in across quantities ...


(Some) Consequences



credit: Robert Stone

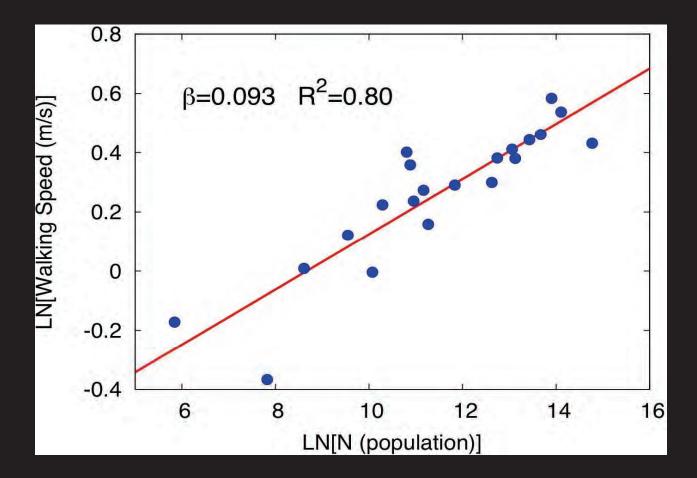
Home Value US Metros



Housing is never affordable in large cities

The city in 3D shape, energy use and mobility

with Markus Schläpfer and Joseph Lee



Urban cellphone networks

 $\beta = 1.12 - 1.19$

Schläpfer, Bettencourt et al, J R Soc I. 2014

Walking Speed vs Population Size

Bettencourt et al, PNAS 2007

NYC Tourists Are 'Like Walking Dead,' Anger Fast-Paced New Yorkers During Holiday Season

By JAKE PEARSON 12/12/13 01:07 PM ET EST AP

"They're like the walking dead, real slow," griped Dennis Moran, 46, a fire safe a building in Times Square and a native New Yorker. "They have this unnatural stopping in the middle of the sidewalk."

😳 🗐 😵

credit: Huffington Pos

Mental Health

ECOLOGY

PSYCHOLOGICAL AND COGNITIVE SCIENCES

Evidence and theory for lower rates of depression in larger US urban areas .and a number of cognitive and behavioral traits

Andrew J. Stier^{a,1}, Kathryn E. Schertz^a, Nak Won Rim^b, Carlos Cardenas-Iniguez^a, Benjamin B. Lahey^c, Luís M. A. Bettencourt^{d,e}, and Marc G. Berman^{f,1}

^aDepartment of Psychology, University of Chicago, Chicago, IL 60637; ^bDivision of Social Sciences, University of Chicago, Chicago, IL 60637; ^cDepartment of Public Health Sciences, University of Chicago, Chicago, IL 60637; ^dDepartment of Ecology & Evolution, University of Chicago, Chicago, IL 60637; ^eMansueto Institute for Urban Innovation, University of Chicago, Chicago, IL 60637; and [†]The University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL 60637

Edited by William A. V. Clark, University of California, Los Angeles, CA, and approved June 18, 2021 (received for review October 27, 2020)

It is commonly assumed that cities are detrimental to mental health. However, the evidence remains inconsistent and at most, makes the case for differences between rural and urban environments as a whole. Here, we propose a model of depression driven by an individual's accumulated experience mediated by social networks. The connection between observed systematic variations in socioeconomic networks and built environments with city size provides a link between urbanization and mental health. Surprisingly, this model predicts lower depression rates in larger cities. We confirm this prediction for US cities using four independent datasets. These results are consistent with other behaviors associated with denser socioeconomic networks and suggest that larger cities provide a buffer against depression. This approach introduces a systematic framework for conceptualizing and modeling mental health in complex physical and social networks, producing testable predictions for environmental and social determinants of mental health also applicable to other psychopathologies.

cities | depression | social networks | built environment | complex systems

iving in cities changes the way we behave and think (1-3).

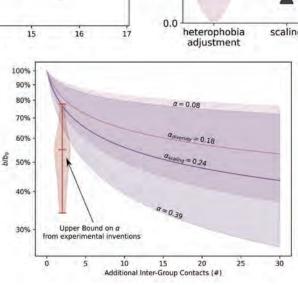
mental health in cities vs. rural areas (7, 8). However, this evidence and that linking SWB and cities (15-18) have remained mixed and often explicitly inconsistent (19, 20) due to differences in 1) reporting (e.g., surveys vs. medical records); 2) types of measurement (e.g., surveys vs. interviews); 3) definitions of what constitutes urban; and 4) the mental disorders studied (e.g., schizophrenia vs. depression).

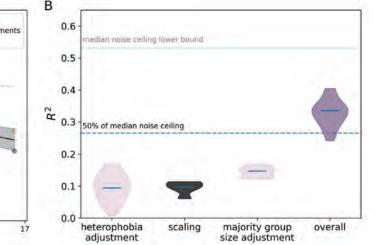
For these reasons, it is desirable to create a systematic framework that organizes this diverse body of research and interrogates how varying levels of urbanization influence mental health across different sets of indicators. Here, we begin to build this framework for depression in US cities. We show that, surprisingly, the per capita prevalence of depression decreases systematically with city size.

Like earlier classic approaches, our strategy frames the effects of city size on mental health through the lens of the individual experience of urban physical and socioeconomic environments. Crucial to our purposes, many characteristics of cities have been recently found to vary predictably with city population size. These systematic variations in urban indicators are explained by denser built environments and their associated increases in the intensity of human interactions and resulting adaptive

https://www.pnas.org/doi/10.1073/pnas.2022472118

City Population, Majority Group Size, and Residential Segregation Drive Implicit Racial Biases in U.S. Cities


Mansueto Institute for Urban Innovation Research Paper 36


В А 52 Pages • Posted: 31 Jan 2023 • Last revised: 13 Apr 2023 IAT data 0.6 heterophobia & group size adjustments Andrew Stier scaling -1.2 University of Chicago - Department of Psychology 0.5 Sina Sajjadi -1.3 0.4 Central European University (seid)nl nl د _{0.3} Fariba Karimi 50% of median noise ceiling GESIS-Leibniz Institute for the Social Sciences 0.2 Luis Bettencourt -1.5 University of Chicago - Mansueto Institute for Urban Innovation 0.1 -1.6 Marc G. Berman University of Chicago - Department of Psychology 0.0 heterophobia Date Written: January 27, 2023 13 14 16 12 15 17 In(N)

Abstract

Implicit biases, expressed as differential treatment towards out-group members, are pervasive in human societies. These biases are often racial or ethnic in nature and create disparities and inequities across many aspects of life. Recent research has revealed that implicit biases are, for the most part, driven by social contexts and local histories. However, it has remained unclear how and if the regular ways in which human societies self-organize in cities produce systematic variation in implicit bias strength. Here we leverage extensions of the mathematical models of urban scaling theory to predict and test between-city differences in implicit racial biases. Our model comprehensively links scales of organization from city-wide infrastructure to individual psychology to quanti-tatively predict that cities that are (1) more populous, (2) more diverse, and (3) less segregated have lower levels of implicit biases. We find broad empirical support for each of these predictions in U.S. cities for data spanning a decade of racial implicit association tests from millions of individuals. We conclude that the organization of cities strongly drives the strength of implicit racial biases and provides potential systematic intervention targets for the development and planning of more equitable societies.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4342718

