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Diagonalising matrices

A matrix is a linear operator mapping a vector space onto another vector space (or itself).

vV —->w=Mv

A square non-singular matrix can be viewed as a change of coordinates (rotation and
scaling) in a vector space. Such a change of coordinates (defined by a matrix M) affects
vectors (v) and matrices (A) as:

v —>v=NMv
A— A = MAM -1 (similarity transformation)

Which can be understood e.g. by considering the linear equation:

u=Av
Mu=MAv = MAM *Mv

u=Av



Diagonalising matrices, cont.

Typically, there exists a similarity transformation T such that:

A—-TAT ' =D

where D is a diagonal matrix. What is at the structure of T?

Recall eigenvalues and eigenvectors:

Av; = \jv; right eigenvectors
T A — T V,; — U, for symmetric matrices
u, — )\iuf,; left eigenvectors

(calculate u; Av; in two different ways...)




Diagonalising matrices, cont.

A—-TAT ' =D



Comment on exceptions

There are matrices that cannot be diagonalised. For example:

a 1
0 a

which has eigenvalue a but only one eigenvector and cannot be diagonalised. It is an example of
a Jordan form, which can be generalised. However, these matrices are singular exceptions
because

a 1

0 e where € #= (

can be diagonalised, but the eigenvectors are close to linearly dependent as ¢ — ()



Linear dynamical systems

Consider Y — AX

Diagonalise A by the change of variables y=Tx

j=Tx=Tx=TAx = TAT 'Tx = Dy *

] C1 exp()\lt)
Ilel
y p— 62 eXp(AQt)

Yi = AilYi =
yi = ¢; exp(At)

c; determined by initial
conditions:) . ¢;v; = x(0)

| | ) C1 exp()\lt) 3

C2 eXp()\zt) — Zz C;V; exp()\f,;t) :



Stability

So, it follows that the dynamical system
X = Ax

has the solution

X — Zz C;V; exp()\it)
~—_

time scales
and therefore

x — 0 as t — oo if the real part of \; are negative for all eigenvalues

Intuitively we may say that the system is stable since, if it is at its fixed point and there is a
perturbation, the deviation will decay exponentially and the system will return to its resting

state. BUT WE NEED TO BE CAREFUL HERE!!!



A complication

Consider

—1] 3
A_( 0 -1 e)

with eigenvalues

AN = —1 Ao = —1+c¢€

clearly, if € is small, both eigenvalues have
negative real part.

So, while it is true that the system
converges to zero given enough time,
there can be large deviations before
this happens...



Why does this happen?

The answer is actually very simple. The solution is a sum of exponentials

X = Zz C;V; GXp()\Z’t)

But even if every eigenvalue is negative, so the amplitude of each term shrinks, the sum
can still grow because the terms can have “different signs” and cancel at t=0. As an

illustration, look at

£(t) = exp(—0.5t) — exp(—t)




Why it matters

Linear systems are often used to understand the (local) behaviour of non-linear
systems. Consider

x = f(x) where f: R"™ — R" and f(xg) =0

If the system is close to its fixed point and f is “smooth enough”, then we can linearise
the equations and study the local behaviour through

/ Jacobian
0 fi(x)

0% = Jy0% + O(027) where Ji = 5

0X = X — X

X=X

So, the stability of a fixed point in a non-linear system can be studied through the
linearised equations defined by the Jacobian of the system at the fixed point. But then,

large deviations can be very problematic since the linearisation itself may break
down...



Stability in linear systems revisited

Consider (again) X — AX

We would like a condition that ensures deviations to decay monotonically with time, i.e.

deviation
] rd
X-X
defining A°®
Since x* Ax is a number, x' Ax = (x! Ax)? T'x * xT'Ax = 2xT (A4 AT)x = i x! Asx

Let v; be eigenvectors of A%, which are orthogonal since A% is symmetric. A° V;, = U;V;

[et x — ZZ a;Vv;, then Symmetry — u; and a; are real

x! ASx = (Z aw?) A° (Z ajvj) = (Z a;Vv; ) (Z ,LL]CLJV]) = ZMCL? <01t pu; <0

1



Stability in linear systems conclusion
x = Ax

If all eigenvalues of A has negative real part, the system will eventually converge
to the fixed point at zero, but deviations from zero may increase before it starts

converging.

If all eigenvalues of A% = (A + A')/2 are negative (they are real since A® is
symmetric, any deviation measured as /X - x will monotonically decrease with
time. In this case A is said to be negative definite.

Note that if the matrix is symmetric in the first place, the first situation includes the second.



Re-v

Consider

—1] 3
A_( 0 -1 e)

with eigenvalues

AN = —1 Ao = —1+c¢€

but

ISIt our example

e <1

* both negative

(Q = x' Ax can be positive, e.g. = (1,1) = Q =1+¢> 0

For ¢ = 0.5, A° has eigenva.

ues (approx.) —4.54 and 1.54, showing that the

system can have non-decreasi

ng deviations.



Fixed point stability and Lyaponov functions

In general it is often hard to prove that a dynamical system has a fixed point that will attract
trajectories in some region. One method often used to approach this problem is to try to
construct a so called Lyaponov function. Here is the idea. Consider the dynamical system

x = f(x) where f : R” — R” and f(0) =0

Construct a smooth scalar function V(x) : R® — R, that decrease with time:

V = VV(x)-f(x) <0
when x # 0. The function V is called a Lyaponov function.

If there exist a Lyaponov function, then O is a (locally) stable fixed point.

Example: V(x) = x - x is a Lyaponov function for a linear system iff A is
negative definite, because then %V(X) < 0.






May’s argument

A complex systems with interacting agents (e.g. an ecosystem) can be described by a dynamical
system. Consider a stationary state (a fixed point of that system), then the Jacobian looks like

J=0A—1
where A;; describes the interaction between species ¢ and j and o is a parameter
that can tune the interaction strength. The identity matrix / ensures that the

system 1s stable in the absence of interactions.

May’s main idea was to look at the eigenvalues (spectrum) of the Jacobian and determine if the
system was stable or not (all eigenvalues have negative real parts). As a model he assumed
random interactions and could then use random matrix theory to estimate the spectral radius of

A and thereby also the Jacobian.
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or the number of species increase, the system
reaches a critical point and then becomes

Critical line, 3(\;) < 0
unstable.
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Example of a spectrum




Generalized Lotka-Volterra

ii — Q?Z(l — $Z> -+ O'Z/L,;j$z’$j
]

Self-regulation Interaction

Fixed points:

r; =0 OT

:CZ(l—ZCz—I—O'ZAwQ?):Oi{ ZC;k :1+UZJA2933;<
J

linear equation -\\“\\‘\\“\‘ﬁ‘
x*=(I—-cA)"'1 ifzf>0

1=(1,1,1,1...)"



Jacobian

J = X(0cA —I) where X = diag(x7,x5,...)

May’s Jacobian assuming x; > (

depends on the fixed
point, natural in
interacting systems that
are not typically linear



Fixed point with increasing interaction strength

“Extinction continuum”
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