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Many interacting components

Weddell Sea food web from Jacob et al. 2011



Heterogeneity between & within components



Nonlinear interactions between components
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Temporal variability



Spa:al extension



Multiple scales

Stommel diagram from Haury et al. 1978



Communities as Complex Systems

 Many interacting components
✅  Heterogeneity between & within components
✅  Nonlinear interactions
✅  Temporal variability
✅  Spatial extension
✅  Multiple scales



Communi:es as Complex Systems

🙀 Emergent proper=es
🙀 Indirect effects, network effects 
🙀 Nega=ve and posi=ve feedback loops
🙀 Tipping points, hysteresis, alterna=ve stable states
🙀 Self-organiza=on



Predicting Ecosystem Responses to Environmental Change



Predic7ng Ecosystem Responses to Environmental Change

• Direct effects + indirect effects mediated by community structure
• Ecosystem function depends on environment E, population size N, 

traits, x — 𝐹(𝐸,𝑁(𝐸), 𝑥(𝐸))
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• Trait change through evolution or community reorganization could 
buffer or exacerbate response to change



Outline

I. Ecological communities as complex systems
II. Introduction to trait-based eco-evolutionary theory (adaptive 

dynamics)
III. Evolutionary rescue (quantitative genetics)
IV. A general framework combining intra- and interspecific trait 

variation (multi-species moment methods)



Traditional Community Ecology Models
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Problem: How to Incorporate Biodiversity?

• indirect effects & complex dynamics possible
• # of interacAon coefficients scales with number of species 𝒩 as 
𝒩!
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Trait-Based Eco-Evolutionary Theory

• parameterize species by their functional traits
• conceptual unification of ecology & evolution

trait 1

tra
it 2
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Trait-Based Eco-Evolutionary Theory
 b lotka: discontinuous evolution

 in mass. The simplest example in point comes to us from physi
 cal chemistry. In general a change of state, such as crystallisa
 tion from a supersaturated solution, involves a change in com
 position, as well as in mass, of one or more phases.
 When we turn to biological systems, composed of a number of

 "kindred-groups," we observe an analogous state of affairs. In
 general the individuals comprised within a kindred-group are
 not all precisely similar. Thus, expressing the matter analytic
 ally, out of a total Ni of individuals of some group Au a certain
 fraction

 NjCi(p,q,r, . . . )dpdqdr. . .

 will have the values of certain characteristic features P, Q, R,
 . . . comprised between the limits

 p and (p + dp)
 q and (q + dq)
 r and (r + dr)

 A similar statement holds for each of the other groups A2,
 A3,

 As time goes on both the values of Nh N2, . . . will in
 general change, and also the form of the frequency functions
 Ci, C2, . . . In other words, the matter of the system under
 goes a change in distribution: (1) among the several kindred
 groups; (2) among the several types of individuals of which each
 group is composed. The former change may be spoken of as
 "Inter-Group Evolution," the latter as "Intra-Group Evolu
 tion."5

 It is intra-group evolution, the change in time of the character
 of a species, with the possibility of the origin of a new species as
 its outcome, which has hitherto mainly engaged the attention of
 the biologist. „
 We, on the contrary, will here turn our attention chiefly to

 certain aspects of inter-group evolution.

 5 Annalen der Naturphilosophie, p. 69. 1911.
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CHAPTER 11

Trait-based ecological and
eco-evolutionary theory
Christopher A. Klausmeier, Colin T. Kremer, and Thomas Koffel

11.1 Overview of trait-based ecology
and evolution

11.1.1 Why trait-based ecology?

Ecological systems are complex, consisting of a
diversity of organisms whose growth, reproduction,
and interactions are often nonlinear. Furthermore,
these processes occur over multiple scales of organi-
zation and in environments that are heterogeneous
in space and time. Theoretical ecologists have
long pursued ways to simplify this complexity by
identifying, describing, and exploring the essential
features that drive ecological processes and
patterns (Levin 1992). One such approach, trait-
based ecology, offers a potent way of studying
the theoretical underpinnings of diversity, while
balancing reductionism and reality. This emerging
paradigm unites new and old ideas behind a
common focus: that by reducing our representation
of individuals, populations, or species to their most
essential characteristics—functional traits—we can
better understand ecological systems.

Trait-based approaches cut across organization
scales from the behavioral and physiological up to
the population, community, and ecosystem levels,
making it possible to study a range of fundamental
questions. For example, the performance of a
population of individuals within a given ecological
setting might be revealed by considering the traits
of an average individual, such as its life history,

behavior, and physiology. Similarly, the distribution
of an entire species across a range of environments
might be understood by considering its mean
trait values, across individuals and populations
(although trait variation also matters; Violle et al.
2012; Enquist et al. 2015). Traits can also be used
to characterize a range of interactions between
species, yielding insights into coexistence, trophic
interactions, and ultimately the diversity and com-
position of entire communities. In turn, representing
whole communities using features of their collective
trait distributions, rather than focusing in detail on
the identity of their constituent species, can reveal
general patterns of succession (e.g., Terseleer et al.
2014) and the in!uence of climate (e.g., Wieczynski
et al. 2019). Critical properties of ecosystems (pro-
ductivity, stability, etc.) may also be related to the
traits (or functions) of the communities they support
(e.g., Díaz and Cabido 2001; Roscher et al. 2012;
Polley et al. 2013). Finally, trait-based approaches
have the potential to integrate ecological and evo-
lutionary perspectives, due to their common focus
on functional traits (or phenotypes) and measures
of "tness. This makes it possible to consider both
the ecological consequences of evolutionary trait
change and the capacity of ecological forces to
impose selection and drive evolution.

Trait-based approaches are valuable to ecological
theory, offering both qualitative and quantitative
insights. Qualitatively, trait-based studies can

Klausmeier, C. A., Kremer, C. T., and Koffel, T., Trait-based ecological and eco-evolutionary theory In: Theoretical Ecology: Concepts and Applications. Edited by:
Kevin S. McCann and Gabriel Gellner, Oxford University Press (2020). © Oxford University Press.
DOI: 10.1093/oso/9780198824282.003.0011

Trait-Based Eco-Evolutionary Theory

ESS Maximum Approach
(Brown, Vincent)

Adaptive Dynamics
(Geritz, Metz, Dieckmann, Law)

Ecological Moment Methods
(Wirtz, Norberg,
Webb, Savage, Bruggeman)

Quan;ta;ve Gene;cs
(Lande, Abrams)

Monte Carlo
(Follows et al.) (in McCann & Gellner, eds., 2020)

Reviewed in:



Optimization

Environment 
(E)

Growth rate 
(g)

Traits (x)
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Game Theore:cal Approach

Environment 
(E)

Growth rate 
(g)

Population
(N)

Traits (x)
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1) Start with a mechanistic model of growth
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2) Generalize to 𝒩 strategies
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3) Identify fitness
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How should we define fitness for general ecological 
scenarios? (Metz et al. 1992 TREE)

Constant environment Periodic environment Aperiodic environment
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(Caswell 2001) (Klausmeier 2008) (Metz et al. 1992)



Separation of Time Scales in Adaptive Dynamics

slower faster

ecology, 𝑑𝑁/𝑑𝑡evolu=on, 𝑑𝑥/𝑑𝑡

𝑑𝑁&
𝑑𝑡

= 𝑔 𝑥& 𝑁& = 0

Either: 𝑁& = 0 or 𝑔 𝑥& = 0
(Geritz et al. 1998, Evol Ecol)



trait, x

Evolutionary Equilibria & Their Stability

Eco	Eq:
𝑔(𝑥!) = 0

Directional Selection

3
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(Geritz et al. 1998, Evol Ecol)
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Evolutionary Stable State

trait, x

trait, x

Evolutionary Equilibria & Their Stability

Eco	Eq:
𝑔(𝑥!) = 0

Eco	Eq:
𝑔( 6𝑥!) = 0

Evo	Eq:

3
𝜕𝑔
𝜕𝑥" $#!

= 0

Directional Selection

8
𝜕%𝑔
𝜕𝑥"% $#!

< 0

3
𝜕𝑔
𝜕𝑥" #!

> 0
in

va
si

on
fit

ne
ss

, g
(x
0)

𝑥!

6𝑥!

(Geritz et al. 1998, Evol Ecol)

in
va

si
on

fit
ne

ss
, g

(x
0)



Branching Point

trait, x

Evolutionary Equilibria & Their Stability
Eco	Eq:
𝑔( 6𝑥!) = 0

Evo	Eq:
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(Geritz et al. 1998, Evol Ecol)
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Branching Point

trait, x

Evolutionary Equilibria & Their Stability
Eco	Eq:
𝑔( 6𝑥!) = 0

Evo	Eq:
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8
𝜕%𝑔
𝜕𝑥"% $#!

< 0, ∃𝑥	s.t.	𝑔 𝑥 > 0

6𝑥!
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Local-but-not-global ESS

Eco	Eq:
𝑔( 6𝑥!) = 0

Evo	Eq:

3
𝜕𝑔
𝜕𝑥" $#!

= 0

8
𝜕%𝑔
𝜕𝑥"% $#!

> 0
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Two-Species
EvoluXonarily Stable Community

trait, x

Evolutionary Equilibria & Their Stability

Eco	Eq:
𝑔( 6𝑥!) = 0,
𝑔( 6𝑥%) = 0

Evo	Eq:
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(Geritz et al. 1998, Evol Ecol)
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Two-Species
EvoluXonarily Stable Community

trait, x

Evolu:onary Equilibria & Their Stability

Eco	Eq:
𝑔( 6𝑥!) = 0,
𝑔( 6𝑥%) = 0

Evo	Eq:

3
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𝜕𝑥" $#!

= 0, 3
𝜕𝑔
𝜕𝑥" $#"

= 0

8
𝜕%𝑔
𝜕𝑥"% $#!

< 0,

8
𝜕%𝑔
𝜕𝑥"% $#"

< 0

𝑔 𝑥 ≤ 0	∀𝑥

☞ An ESC is an endpoint of evolution AND community assembly
(Edwards et al. 2018 Ecol Let)

(Geritz et al. 1998, Evol Ecol)
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Example: Lotka-Volterra Compe::on

𝑑𝑁"
𝑑𝑡
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#$%

𝒩

𝛼 𝑥", 𝑥# 𝑁# 𝑁"

Trait-based LV models can be derived from more-mechanistic
consumer-resource models (Ackermann and Doebeli, 2004;
MacArthur, 1972), and have frequently been used to understand
the interplay of competition and evolution (Barabás et al., 2012;
Fort et al., 2009; Polechová and Barton, 2005; Roughgarden,
1979; Scheffer and van Nes, 2006). The width and shape of the
resource distribution has been shown to play an important role
in determining the diversity of communities. A broad consensus
has emerged from previous work that the width of the resource
distribution determines community diversity (Barabás et al.,
2016; Barabás and Meszéna, 2009; Kremer et al., 2017; Szabó
and Meszéna, 2006). Wider resource distributions result in wider
trait ranges where intrinsic growth rate of species is positive, also
known as the fundamental community (Klausmeier et al., 2020).
Simply put, wider fundamental communities have more room in
which to pack species, resulting in more diverse communities.

While studies have investigated the impact of width and shape
on various aspects of the diversification process, they each have
some limitations. First, most studies have assumed unimodal car-
rying capacity functions (quadratic or Gaussian). Kisdi also consid-
ered monotonic functions (linear and convex) (Kisdi, 1999);
Barabas and D’Andrea also considered triangular (Barabás et al.,
2016); and Szabo & Meszena also considered rectangular and frac-
tal (Szabó and Meszéna, 2006). Yet, as far as we know, none have
considered bimodal carrying capacity functions. Second, most
studies using the LV model to study diversification typically focus
on the transition from one species to two (Dieckmann and Doebeli,
1999). Those that consider more species-rich communities use
either a few discrete width-values (Barabás et al., 2016; Pastore
et al., 2021; Szabó and Meszéna, 2006) and/or focus on evolution-
ary divergence through time (Birand and Barany, 2014; Bonsall
et al., 2004; Cressman et al., 2017; Pontarp et al., 2015). Therefore,
the impact of continuously varying the width of resource distribu-
tions with different shapes on the generation of large numbers of
species and their traits has not been investigated (although see
(Barabás et al., 2016; Landi et al., 2013; Szabó and Meszéna, 2006)).

To address this gap, we investigate a trait-based LV model
across a range of resource distribution widths and with two
resource-distribution shapes. Keeping with previous studies, we
assume a Gaussian competition kernel. For the resource distribu-
tion, we choose a traditional unimodal function as well as a more
novel bimodal function. For each of the shapes of the intrinsic
growth rate function, we solve for the Evolutionarily Stable Com-
munity (ESC) (Edwards et al., 2018; Kremer et al., 2017) as a func-
tion of the width of the resource distribution. We find that wider
resource distributions result in higher diversity in the community.
At low widths of the resource distribution, the bimodal distribu-
tion results in twice as many species as the unimodal, but not for
very high widths. For very high widths, we see the same diversity
regardless of the shape of the resource distribution function. We

also find that Matessi and Jayakar’s maximization principle
(Matessi and Jayakar, 1980, 1981) (an extension of MacArthur’s
purely ecological minimization principle (MacArthur, 1970, Mac
Arthur, 1969) to co-evolving species) is applicable to our model,
with multiple species at various widths of the intrinsic growth rate
function.

2. Model

2.1. Model formulation

We model competition using a trait-based LV model, where the
number of speciesN is not fixed a priori but allowed to emerge via
community assembly and eco-evolutionary processes. Each species
i has population density ni, trait value xi, and per-capita growth
rate

1
ni

dni

dt
¼ r xið Þ $

XN

j¼1

a xi; xj
! "

nj ¼ g xi; n
!; x!

# $
ð1Þ

A species’ trait value xi determines its intrinsic growth rate r xið Þ,
the growth rate when no competitors are present. The intrinsic
growth rate function implicitly models its consumption of
resources (Ackermann and Doebeli, 2004; MacArthur and Levins,
1967) and thus captures the resource supply distribution. Since
this distribution might differ between sites, a range of different
intrinsic growth rate functions are possible depending upon the
environment. The competition coefficient a xi; xj

! "
determines the

strength of competition between species i and j, and depends on
the difference between their traits xi and xj. Further, we assume
that the strength of intraspecific competition is 1 (a xi; xið Þ ¼ 1),
so that the equilibrium density of the species by itself (carrying
capacity) equals its fundamental growth rate r xið Þ. More generally,

the per-capita growth rate is denoted by the function g xi; n
!; x!

# $
,

to signal its dependence on the trait xi of the focal species i and the
whole community’s abundances ( n!) and traits ( x!). Since the traits
determine the species’ abundances at an ecological equilibrium,

we simplify the invader growth rate as g xi; x
!# $

at equilibrium.

This simplification only applies at equilibrium since the invader’s
growth rate does depend on the densities of the resident species
when the resident community is not at equilibrium. Note that
our formulation of the LV model in Eq. (1) differs from the more
common formulation that uses the carrying capacity as the trait-
dependent term. We believe that this formulation is more intuitive
because it separates the per capita growth rate of a species into
two terms — the density-independent intrinsic growth rate and

Fig. 1. The two intrinsic growth rate functions plotted at different values of w, the width parameter. A) The unimodal function represents a resource distribution where there
is one prominent resource in the environment. B) The bimodal function represents a different environment where there are two prominent resources.

R. Ranjan and C.A. Klausmeier Journal of Theoretical Biology 538 (2022) 111054
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Expanding the resource distribution

As predicted by classical theory (Abrams, 1983; MacArthur and
Levins, 1967), competition results in approximately evenly spaced
traits at any width of the resource distribution due to the character
displacement between the species (Fig. 4). Interestingly, the role of
the shape of the intrinsic growth function is not immediately
apparent from the trait patterns in this case, apart from setting
the range of species with positive growth (white region of Fig. 4),
termed the fundamental community (Klausmeier et al., 2020).
The width of the resource distribution determines the species

richness because species divide the available trait space between
them, each with a roughly constant distance between species.

3.2. Bimodal intrinsic growth function

3.2.1. Initial bifurcations
A bimodal intrinsic growth rate function such as Eq. (3) is rep-

resentative of an environment with two prominent resources. At
low widths of the resource distribution, each peak behaves like

Fig. 2. The invasion fitness landscapes during the transition from one to two species at ESC. The colored vertical bars in the figures represent the traits of the resident species.
(a) Before the bifurcation point (w ¼ 1:55), the invasion fitness of an invader with any trait value is negative. (b) At the bifurcation point (w ¼ 1:5511), the invasion fitness of
the invaders with traits close to resident species at ESC (xi ¼ 0) is zero. (c) As the width increases beyond the bifurcation point (w ¼ 1:5512), the invasion fitness of the
invaders becomes positive and the resident becomes susceptible to invasion. (d) Finally, after invasion at w ¼ 1:5561, a new ESC with two species emerges.

Fig. 3. The invasion fitness landscapes during the transition from two to three species at ESC. The colored vertical bars in the figures represent the traits of the resident
species. (a) Before the bifurcation point (w ¼ 1:72939), no invader can invade the two-species ESC. (b) At the bifurcation point (w ¼ 1:82939), the invasion fitness of the
invader with trait, xi ¼ 0 is zero. (c) As the width increases beyond the bifurcation point (w ¼ 1:8294), the invader faces weakened competition, and its invasion fitness
becomes positive. The inset shows a magnified picture of the invasion fitness landscape. (d) At w ¼ 1:93939, invasion results in a new ESC with three species.

R. Ranjan and C.A. Klausmeier Journal of Theoretical Biology 538 (2022) 111054
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species. (a) Before the bifurcation point (w ¼ 1:72939), no invader can invade the two-species ESC. (b) At the bifurcation point (w ¼ 1:82939), the invasion fitness of the
invader with trait, xi ¼ 0 is zero. (c) As the width increases beyond the bifurcation point (w ¼ 1:8294), the invader faces weakened competition, and its invasion fitness
becomes positive. The inset shows a magnified picture of the invasion fitness landscape. (d) At w ¼ 1:93939, invasion results in a new ESC with three species.

R. Ranjan and C.A. Klausmeier Journal of Theoretical Biology 538 (2022) 111054
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Example: Lotka-Volterra Competition

an independent unimodal growth rate function. As in the unimodal
case, we first examine the initial bifurcations – going from two to
four species, and then from six to seven species. We skip discussion
of the bifurcation from four to six species since it is similar to the
bifurcation from two to four species.

At low w, only a narrow range of species can invade the empty
environment. Typically, in the limit as w ! 0, coexistence is
impossible and the species with the greatest intrinsic growth rate
is a global ESS. However, the growth function in Eq. (3) is atypical,
because the growth rate at the two peaks is exactly equal. There-
fore, at low w, the ESC consists of the two species with maximum
intrinsic growth rate (Fig. 5a).

Increasing the width of the resource distribution increases the
dissimilarity between traits that maximize the intrinsic growth
rate, which also increases the trait differences between the species
in the ESC. Upon further increasing w, two bifurcations occur

simultaneously, one corresponding to each peak of the resource
distribution. At this bifurcation point, the invasion fitness of the
invaders with traits with small differences from the resident
appears to be zero (Fig. 5b), apparently similar to the first bifurca-
tion in the unimodal model where the ESC goes from one-species
to two species (Fig. 2). However, a close inspection (Fig. 5c) shows
that this is actually a nonlocal bifurcation as in Fig. 3, although the
nonlocal invader is so close to the resident that the two scenarios
are practically indistinguishable. Increasing w results in less com-
petition for potential invaders with traits dissimilar to the species
at the peak. As the width crosses the bifurcation point, the evolu-
tionary equilibrium can be invaded (Fig. 5d). Upon invasion, each
peak allows for two residents at the new ESC, bringing the overall
number of species to four (Fig. 5e).

As w increases further, the same type of bifurcation repeats,
resulting in an addition of one species under each peak of the
resource distribution, bringing the overall diversity to six species.
However, increasing w further leads to a different type of bifurca-
tion, which takes the ESC from six species to seven species (Fig. 6).
The increasing width of the intrinsic growth function results in
increased distance between the traits that maximize the intrinsic
growth rate. Since the species at ESC follow these peaks, they are
roughly equally spaced under each peak and become more and
more dissimilar as the width of the resource distribution increases
(Fig. 6a). At the bifurcation point, the central invader with xi ¼ 0 is
on the cusp of invasion and has zero invasion fitness due to
reduced competition (Fig. 6b). Increasing the width further results
in the loss of global stability for the resident community, and
leaves it open to invasion (Fig. 6c). After the invasion by the species
with xi ¼ 0, the new resident community with seven species
regains global stability and is therefore a new ESC (Fig. 6d). As with
the second bifurcation in the unimodal case, this bifurcation con-
stitutes the loss of global stability for the resident and is therefore
not reachable through the small mutations assumed by classic
adaptive dynamics methods.

Fig. 4. The trait patterns of communities up to 25 species as the width of the
unimodal intrinsic growth function is increased. The shaded portion is outside the
fundamental niche, where the intrinsic growth rate of each species is negative.
Competition results in roughly equal spacing of the traits within the fundamental
niche.

Fig. 5. The invasion fitness landscapes during the transition from two to four species at ESC. The colored vertical bars in the figures represent the traits of the resident species.
(a) Before the bifurcation point (w ¼ 2:86283), the ESC consists of two species. (b) At the bifurcation point (w ¼ 2:96283), the invasion fitness of the invaders with traits close
to resident species at both peaks is zero. (c) For a very small parameter range (2:962837 < w < 2:963012) after the bifurcation point, the evolutionary equilibrium loses global
stability but maintains local stability. (d) As the width further increases (w ¼ 2:96383), the evolutionary equilibrium becomes locally unstable. Thus, the invasion fitness of
the invaders at each peak becomes positive (shown in inset) and the resident community can be invaded. (e) After invasion (w ¼ 3:06283), a new ESC with four species
emerges. A magnified view of the fitness landscape at each peak is shown in inset.

R. Ranjan and C.A. Klausmeier Journal of Theoretical Biology 538 (2022) 111054
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Eco-evolutionary Bifurcation Diagrams
• How do community structure 

(diversity, species traits) and 
ecosystem functions depend 
on abiotic environmental 
parameters?

• How will ecosystems 
reorganize in the face of 
human impacts?
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Separation of Time Scales in Adaptive Dynamics

slower faster

ecology, 𝑑𝑁/𝑑𝑡evolu=on, 𝑑𝑥/𝑑𝑡
environmental change, 
𝑑𝐸/𝑑𝑡



Predic7ng Popula7on Responses to Environmental Change



Bill Marsh, New York Times



III. Evolutionary Rescue

evolutionary rescue — the recovery 
and persistence of a population 
through natural selection acting on 
heritable variation 

Charles Darwin GIF by Diego Sanches
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Evolution in a changing environment
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Lynch & Lande (1993) Conclusions

1) Environmental change causes trait to lag optimum
2) Equilibrium lag increases linearly with rate of environmental change 𝛿
3) Increased genetic variance V helps species keep up
4) There is a critical rate of environmental change 𝛿B where 𝑔 7𝑥 = 0 that 

leads to extinction

Lynch M, Lande R (1993) EvoluPon and exPncPon in response to 
environmental change. In: Kareiva P, Kingsolver J, Huey R (eds) 
BioPc InteracPons and Global Change. Sinauer, pp 234–250
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Existential Crises & Evolutionary Tipping Points
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as stronger selection leads to reduced variance and hence a var-
iance load that does not necessarily increasewith the strength of
selection (see equation (14) in [11] for an approximation ofVg as
a function of selection strength).

3. Complication 1: non-quadratic fitness
functions

As we recently pointed out [12], most moving optima models
have followed the quantitative genetics tradition in assuming
that fitness is a quadratic function of phenotype. This approach
has a long and successful history (e.g. [10,13]) because it is a
useful approximation of any form of stabilizing selection pro-
vided the population is close to the phenotypic optimum
(essentially a second-order Taylor series expansion of fitness
around the optimum). While this condition has long been a
common assumption, it is not necessarily validwhen consider-
ing extinction due to sufficiently rapid environmental change:
far from the phenotypic optimum there is little evidence to say
what shape fitness functions will take.

Are moving optima models sensitive to the assumption of
a quadratic fitness function? Osmond & Klausmeier [12] have
shown that the central concept of moving optima models, the
existence of a critical rate of environmental change, may
collapse if fitness functions are not quadratic. In particular,
inflection points in the continuous time fitness function
cause extrema in the selection gradient that can produce evol-
utionary tipping points and existential crises, where small
changes in the phenotypic lag cause sudden shifts to alterna-
tive stable states (including extinction). For example, assume
birth rate is a Gaussian function and death rate is constant

r(x,E) ¼ rmaxe"ðx"EÞ2=2s2
r " d ð3:1Þ

(figure 2a). A fitness function that is bounded from below
is plausible, given that birth rates cannot be negative.
Figure 2b then shows the extrema in the selection gradient
that arise at the inflection points and figure 2c shows the tip-
ping point that results. These evolutionary tipping points are
problematic from a conservation perspective because they
are difficult to detect beforehand and cause hysteresis,
e.g. slowing the rate of environmental change may not help a
population recover.

Evolutionary tipping points have also been observed in a
recent extension of the moving optimum model to stage-
structured populations [14]. This is despite the fact that each
component of fitness in this model is quadratic (in continuous
time). However, in age- and stage-structured populations the
selection gradient (and thus life-time fitness) depends on the
elasticities of each transition [15], which vary with mean trait
value, creating nonlinearities. These nonlinearities can then
cause extrema in the selection gradient, just as inflection
points in the fitness function do (see also Complication 2:
population dynamics (§4)).

Table 1. Key symbols used.

symbol meaning

r, !r fitness, mean fitness

x, !x trait, mean trait

E environmental optimum trait value

rmax maximum fitness

sr width of fitness function

Vg additive genetic variance

d rate of environmental change

xl ¼ E " !x, x̂l trait lag, equilibrium trait lag

dc critical rate of environmental change, where !r ¼ 0

dtip tipping point rate of environmental change, where

population goes extinct abruptly

b birth rate

d death rate

N, N̂ population density, equilibrium population density

xl;c critical trait lag

Epre, Epost environment before and after change

Ec,eco, Ec,evo ecological and evolutionary critical environmental
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Figure 2. Non-quadratic fitness landscapes. (a) A Gaussian fitness landscape.
(b) The fitness gradient has extrema at the inflection points of the fitness
landscape, so that the rate of adaptation does not increase linearly with
trait lag. (c) Depending on the rate of environmental change δ and the addi-
tive genetic variance Vg, this results in either two equilibria, one stable x̂l,st
(solid line) and one unstable x̂l,unst (dashed line), or no equilibrium at all
when δ > δtip. Parameter values: rmax = 1, σr = 1, d = 0.1, Vg = 1.
(Online version in colour.)
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Population Regulation

Density-dependence (DD) & trait-dependence (TD) of growth can 
each affect births & deaths

Trait-Dependence Density-Dependence Growth Rate, 𝒈 𝒙, 𝑬, 𝑵

Births Deaths 𝑏&'( −
𝑥 − 𝐸 %

2𝜎)%
− 𝑑(1 + 𝑁)

Deaths Births 𝑏 1 − 𝑁 − 𝑑&*+ +
𝑥 − 𝐸 %

2𝜎)%

Births Births 𝑏&'( −
𝑥 − 𝐸 %

2𝜎)%
1 − 𝑁 − 𝑑

Deaths Deaths 𝑏 − 𝑑&*+ +
𝑥 − 𝐸 %

2𝜎)%
(1 + 𝑁)

Klausmeier CA, Osmond MM, Kremer CT, Litchman E (2020) Ecological 
limits to evolutionary rescue. Phil Trans R Soc B 375:20190453



Equilibrium trait-lag & abundance
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Eco-evo phase planes (DD & TD deaths)
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Predator-prey

• Death due to predaKon from a generalist predator (k is 
strength of predaKon)

𝑑𝑁
𝑑𝑡 =

&𝑏( ̅𝑧, 𝑁) − .𝑚 ̅𝑧, 𝑁 − 𝑘 ̅𝑓( ̅𝑧, 𝑁) 𝑁

• Does predator help prey adapt and persist in changing 
environments?

Osmond MM, OWo SP, Klausmeier CA (2017) When 
predators help prey adapt and persist in a changing 
environment. American Naturalist 190: 83–98. 



Two ways predators help prey adapt

Osmond MM, OWo SP, Klausmeier CA (2017) When 
predators help prey adapt and persist in a changing 
environment. American Naturalist 190: 83–98. 



Two ways predators help prey persist 

Predators help prey persist if…

𝑑𝛿8
𝑑𝑘 = 𝑉9

𝜕:𝑔
𝜕 ̅𝑧	𝜕𝑘 +

𝜕 ̅𝑧8
𝜕𝑘 ⋅

𝜕:𝑔
𝜕 ̅𝑧:	 > 0

selective
push +

evolutionary
hydra
effect

⋅
Litness
function
curvature

> 0

Osmond MM, Otto SP, Klausmeier CA (2017) When 
predators help prey adapt and persist in a changing 
environment. American Naturalist 190: 83–98. 



Two ways predators help prey persist

did not affect prey lag, the predator would go extinct at a
lower rate of environmental change than its prey (at the
point where prey biomass production dropped below the
threshold required for predator persistence), and therefore
specialists would not affect prey persistence. However,
specialist predators can affect prey lag in the same ways
that generalists can. It can therefore be reasoned that, if
a specialist predator reduced prey lag enough to maintain
sufficient prey biomass production at rates of environ-

mental change greater than that which would allow the
prey to persist on its own, the predator could sustain itself
and, by necessity, help its prey persist.
We demonstrate the above logic by explicitly modeling

specialist predator density, P, and trait values, zP. In gen-
eral, per capita rates of prey birth (b), death (m), and pre-
dation (kf ) could now depend on the traits and densities
of both species. However, our goal here is only to show
that the selective push and evolutionary hydra effect can
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Figure 2: Selective push. A–C, Temporal dynamics of mean prey phenotype, population density, and phenotypic variance when the opti-
mum phenotype changes at rate d p 0:02. Dashed curves are analytical solutions for equilibrium values (supplementary Mathematica file).
Thick curves are numerical solutions (supplementary Mathematica file). Thin curves are results from one simulation (obscured by thick
curves in A; appendix). D–F, Equilibrium dynamics of steady-state phenotypic lag, population density, and phenotypic variance as functions
of the rate of environmental change. Curves give analytical results (supplementaryMathematica file). Dots give simulation results (mean5 1:96
SE of 10 replicates; appendix). Parameters: bmax p 0:01, Rtot p 1,000, mmin p 0:1, g p 1, gk p 1, a p 0:05, k p 0, (gray), k p 2 (black).
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Rate of environmental change, 𝛿

Selec8ve push

Rate of environmental change , 𝛿

Evol. hydra effect * posi8ve curvature

other. In our analytic approximations, we assume that gk is
small enough that f(z, zP, P) remains positive for the vast
majority of prey and predators.

We assume predators are born at per capita rate ekf(z, zP,
P)N, where e describes how efficiently consumed prey are
turned into new predators and die at constant per capita rate
mP. Thus the predator is not directly affected by the chang-
ing abiotic optimum, v, but is indirectly influenced through
its effect on the prey. Like the prey, predators are assumed to

randomly mate, with their offspring inheriting the mean trait
value of the two parents plus a random normal segregation
effect withmean 0 and variancea2

P. We assume predator trait
values remain normally distributed with mean !zP and vari-
ance Vz,P.
The prey’s per capita birthrate is assumed to be b(N , P) p

bmax(Rtot 2 N 2 P), where we subtract P from Rtot 2 N to ac-
count for resources bound up in predators. The prey’s per
capita mortality rate is m(z) p mmin 1 (g=2)(v2 z)2, de-
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Figure 4: Evolutionary hydra effect. A–C, Temporal dynamics of mean prey phenotype, population density, and phenotypic variance when
the optimum phenotype changes at rate d p 0:0006. Dashed curves are analytical solutions for equilibrium values (supplementary Math-
ematica file). Thick curves are numerical solutions (supplementary Mathematica file). Thin curves are results from one simulation (obscured
by thick curves in A, B; appendix). D–F, Equilibrium dynamics of steady-state phenotypic lag, population density, and phenotypic variance as
functions of the rate of environmental change. Curves give analytical results (supplementary Mathematica file). Dots give simulation results
(mean5 1:96 SE of 10 replicates; appendix). Parameters: bmax p 0:01, Rtot p 1, 000, g p 1, a p 0:05, k p 0, (gray), k p 1 (black).
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other. In our analytic approximations, we assume that gk is
small enough that f(z, zP, P) remains positive for the vast
majority of prey and predators.

We assume predators are born at per capita rate ekf(z, zP,
P)N, where e describes how efficiently consumed prey are
turned into new predators and die at constant per capita rate
mP. Thus the predator is not directly affected by the chang-
ing abiotic optimum, v, but is indirectly influenced through
its effect on the prey. Like the prey, predators are assumed to

randomly mate, with their offspring inheriting the mean trait
value of the two parents plus a random normal segregation
effect withmean 0 and variancea2

P. We assume predator trait
values remain normally distributed with mean !zP and vari-
ance Vz,P.
The prey’s per capita birthrate is assumed to be b(N , P) p

bmax(Rtot 2 N 2 P), where we subtract P from Rtot 2 N to ac-
count for resources bound up in predators. The prey’s per
capita mortality rate is m(z) p mmin 1 (g=2)(v2 z)2, de-
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Figure 4: Evolutionary hydra effect. A–C, Temporal dynamics of mean prey phenotype, population density, and phenotypic variance when
the optimum phenotype changes at rate d p 0:0006. Dashed curves are analytical solutions for equilibrium values (supplementary Math-
ematica file). Thick curves are numerical solutions (supplementary Mathematica file). Thin curves are results from one simulation (obscured
by thick curves in A, B; appendix). D–F, Equilibrium dynamics of steady-state phenotypic lag, population density, and phenotypic variance as
functions of the rate of environmental change. Curves give analytical results (supplementary Mathematica file). Dots give simulation results
(mean5 1:96 SE of 10 replicates; appendix). Parameters: bmax p 0:01, Rtot p 1, 000, g p 1, a p 0:05, k p 0, (gray), k p 1 (black).
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Osmond MM, Otto SP, Klausmeier CA (2017) When 
predators help prey adapt and persist in a changing 
environment. American Naturalist 190: 83–98. 



Ecological Complications

1) Non-quadratic fitness functions
2) Population regulation
3) Community context
4) Fundamental niche limits
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Fundamental niche limits
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Speed of adaptation still matters
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III. Conclusions
• Non-quadratic fitness functions and the interplay between 

density-dependence & trait-dependence can lead to evolutionary 
tipping points and existential crises

• Community context matters: predators can help prey adapt & 
persist, trailing-edge competitors at heightened risk

Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N (2012) Eco-evolu.onary 
responses of biodiversity to climate change. Nature Climate Change 2: 747–751 

Osmond MM, Klausmeier CA (2017) An evolu.onary .pping point in a changing 
environment. Evolu.on 71: 2930–2941

Osmond MM, OSo SP, Klausmeier CA (2017) When predators help prey adapt and 
persist in a changing environment. American Naturalist 190: 83–98. 

Klausmeier CA, Osmond MM, Kremer CT, Litchman E (2020) Ecological limits to 
evolu.onary rescue. Phil Trans R Soc B 375: 20190453

ECOLOGICAL
LIMITS

TO
EVOLUTIONARY RESCUE

• Fundamental niche limits might constrain evolu=onary 
rescue more than rate-dependent processes



IV. A general framework combining intra- and 
interspecific trait variation 

• Many trait-based theoreAcal 
frameworks ignore intraspecific 
trait variaAon (adapAve 
dynamics, ESS maximum 
approach) or treat it as fixed

• QuanAtaAve geneAcs can model 
intraspecific trait variaAon but 
typically focuses on a single 
species



1. MulK-species moment methods
A. Moment dynamical equa=ons
B. Invasion criteria / branching condi=ons
C. Example: Lotka-Volterra compe==on

2. Extension to class-structured populaKons
A. Moment dynamical equa=ons
B. Example: two-patch model

(Wickman, Koffel & Klausmeier Am Nat 2023)

IV. A general framework combining intra- and 
interspecific trait variation 



1. Multi-species Moment Methods

• Consider 𝒩 species (𝒩	to be determined) with normally 
distributed traits

• Each species has a trait distribuKon 𝑛; 𝑥 	characterized by its 
first three moments
– 0th – total abundance, 𝑁(
– 1st – mean trait, 𝑥(
– 2nd – trait variance, 𝑉(

trait, 𝑥!
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𝑛!(𝑥)

𝑛<(𝑥)

𝑛%(𝑥)



1. Multi-species Moment Methods

• Individual-level fitness function

𝑔 𝑥; 𝑛(⋅) =
𝑑𝑛
𝑛𝑑𝑡

(N.B. includes species interactions!)



1. Mul:-species Moment Methods
• Fitness and interac=ons need to be averaged over trait distribu=ons to 

derive popula=on-level fitness (Gaussian integral)

(𝑔 𝑥(, 𝑉( 𝑁( = ,𝑔 𝑥 𝑛((𝑥; 𝑥(, 𝑉()𝑑𝑥	

𝑔 𝑥 = 1 − 𝑥U

7𝑔 𝑥& , 𝑉& = 1 − 𝑥&U − 𝑉&

𝛼 𝑥, 𝑥V 𝑛W(𝑥V) = exp(
− 𝑥 − 𝑥V U

2𝜎
)𝑛W(𝑥V)

7𝛼 𝑥, 𝑥W , 𝑉W = exp
X YXY%

&

U(Z[ \%)
Z

Z&[\%
𝑁W 	

𝑔(𝑥)

𝛼(𝑥, 𝑥′)

𝑛=(𝑥; 𝑥= , 𝑉=)

𝑛>(𝑥′; 𝑥> , 𝑉>)



1. Mul:-species Moment Methods

Total abundance:
𝑑𝑁"
𝑑𝑡

= %𝑔 𝑥", 𝑉" 𝑁"
Trait mean:

𝑑𝑥"
𝑑𝑡

= 𝑉"
𝜕 %𝑔
𝜕𝑥

(𝑥", 𝑉")

Trait variance:
𝑑𝑉"
𝑑𝑡

= 𝑉"!
𝜕! %𝑔
𝜕𝑥!

𝑥", 𝑉" + .𝑏 𝑥", 𝑉" 𝑀

(.𝑏 is birth rate, 𝑀 is mutaAon variance)



Example: Lotka-Volterra Competition

𝑑𝑁*
𝑑𝑡

= 1 − 𝑥*+ − 𝑉* −/
,-.

𝒩
𝜎

𝜎+ + 𝑉* + 𝑉,
exp(− 𝑥* − 𝑥,

+
/ 2 𝜎+ + 𝑉* + 𝑉,) 𝑁, 𝑁*

𝑑𝑥*
𝑑𝑡

= 𝑉* −2𝑥* +/
,-.

𝒩
𝜎(𝑥* − 𝑥,)

𝜎+ + 𝑉* + 𝑉,
0/+ exp(− 𝑥* − 𝑥,

+
/ 2 𝜎+ + 𝑉* + 𝑉,) 𝑁,

𝑑𝑉*
𝑑𝑡

= 𝑉*+ −2 +/
,-.

𝒩 𝜎 𝜎+ + 𝑉* + 𝑉, − 𝑥* − 𝑥,
+

𝜎+ + 𝑉* + 𝑉,
2/+ exp(− 𝑥* − 𝑥,

+
/ 2 𝜎+ + 𝑉* + 𝑉,) 𝑁, + 𝑀



Example: Lotka-Volterra Compe77on
(𝒩 = 1, 𝜎 = 1,𝑀 = 10!")
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𝑛!(𝑥)



1.B. Invasion Criteria in Moment-Structured 
Popula7ons

• To determine the evolutionarily stable community, we need 
invasion criteria

• 💡Idea: introduce rare invader (𝑁D ≈ 0), evolve its trait mean, 
𝑥D, and trait variance, 𝑉D, in the environment set by resident(s) 
until it reaches a stable equilibrium (𝑥D∗, 𝑉D∗), then calculate its 
population growth rate, R𝑔(𝑥D∗, 𝑉D∗)

• Can be visualize with phase-plane



Example: Lotka-Volterra Compe77on
(𝒩 = 1, 𝜎 = 1,𝑀 = 10!")
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 𝑥

t

Convergence to resident, then neutral invasion
rate ( 7𝑔(𝑥#∗, 𝑉#∗) = 0) ⇒ failed invasion

⇒ one-species evolutionarily stable community
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Example: Lotka-Volterra Compe77on
(𝒩 = 1, 𝜎 = 0.5,𝑀 = 10!")
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𝑛!(𝑥)



Example: Lotka-Volterra Competition
(𝒩 = 1, 𝜎 = 0.5,𝑀 = 10!")

in
va

de
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ra
it,

 𝑥

t

Convergence to resident, then neutral 
invasion rate ( 7𝑔(𝑥#∗, 𝑉#∗)=0) ⇒ failed 
invasion
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Example: Lotka-Volterra Compe77on
(𝒩 = 1, 𝜎 = 0.5,𝑀 = 10!")

in
va

de
r t

ra
it,

 𝑥

t

Distinct equilibrium moments, then positive
invasion rate ( 7𝑔(𝑥#∗, 𝑉#∗) = 0.0295) 
⇒ successful invasion

⇒ locally evolutionarily stable, but globally invasible
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Example: Lotka-Volterra Competition
(𝒩 = 2, 𝜎 = 0.5,𝑀 = 10!")
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𝑛!(𝑥)𝑛%(𝑥)

AGer invasion, two species coexist



Example: Lotka-Volterra Compe77on
(𝒩 = 2, 𝜎 = 0.5,𝑀 = 10!")

in
va

de
r t

ra
it 

va
ria
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e,

 𝑉
#

invader trait mean, 𝑥#

Convergence to resident, then neutral 
invasion rate
( 7𝑔(𝑥#∗, 𝑉#∗ = 0) ⇒ failed invasion

Convergence to another equilibrium, 
then negaJve invasion rate
( 7𝑔(𝑥#∗, 𝑉#∗) < 0) ⇒ failed invasion

⇒ two-species evolutionarily stable 
community



Example: Lotka-Volterra Competition
(𝒩 = 2, 𝜎 = 0.3,𝑀 = 10!")
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 𝑉
#

invader trait mean, 𝑥#

Three invader equilibria, each with 
positive invasion rate ( 7𝑔(𝑥#∗, 𝑉#∗ > 0)

Two residents are not convergence 
stable ⇒ branching point



Example: Lotka-Volterra Compe77on
(𝒩 = 3, 𝜎 = 0.3,𝑀 = 10!")
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𝑛!(𝑥)𝑛<(𝑥)

After invasion, three species coexist.
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2. Extension to Class-Structured Popula:ons

𝑓(𝑥)

𝑛a 𝑥 : 𝑁a,& , 𝑥a,& , 𝑉a,&

𝑛b 𝑥 : 𝑁b,& , 𝑥b,& , 𝑉b,&

trait, 𝑥

Source Class:

Destination Class:

𝑑𝑛+,( 𝑥
𝑑𝑡

+= 𝑓 𝑥 𝑛-,((𝑥)



2. Extension to Class-Structured Popula:ons

Total abundance:
𝑑𝑁N,;
𝑑𝑡 += S𝑓 𝑥O,; , 𝑉O,; 𝑁O,;

change	in
destination
abundance

+= population−level
rate

source
abundance



2. Extension to Class-Structured Populations

Trait mean:
𝑑𝑥N,;
𝑑𝑡 +=

𝑁O,;
𝑁N,;

𝑉O,;
𝜕 S𝑓
𝜕𝑥 𝑥O,; , 𝑉O,;  + S𝑓(𝑥O,; , 𝑉O,;)(𝑥O,; − 𝑥N,;)

change	in
destination
trait−mean

+= relative
abundance × directional

selection + trait−mean
Llow



2. Extension to Class-Structured Popula:ons

Trait variance:

𝑑𝑉3,*
𝑑𝑡 +=

𝑁5,*
𝑁3,*

𝑉5,*+
𝜕+ ;𝑓
𝜕𝑥+ 𝑥5,* , 𝑉5,* + ;𝑓 𝑥5,* , 𝑉5,* 𝑉5,* −𝑉3,* + ;𝑓 𝑥5,* , 𝑉5,* 𝑥5,* − 𝑥3,*

+

+2𝑉5,*
𝜕 ;𝑓
𝜕𝑥 𝑥5,* , 𝑉5,* (𝑥5,* − 𝑥3,*) + ;𝑓 𝑥5,* , 𝑉5,* 𝑀

change	in
destination

trait−variance
+= relative

abundance ×

quadratic
selection

+ trait−variance
Blow +

between−to−
within−class
variance	Blow

+ directional−selection	×
trait−mean	interaction + mutation



Example: Two-Patch Model

𝑑𝑛c,&(𝑥)
𝑑𝑡

= 𝑟c 𝑥 −Q
Wd!

𝒩

𝑛c,W 𝑛c,& + 𝐷 𝑛f,& − 𝑛c,&

𝑑𝑛f,&(𝑥)
𝑑𝑡

= 𝑟f 𝑥 −Q
Wd!

𝒩

𝑛f,W 𝑛f,& + 𝐷 𝑛c,& − 𝑛f,&

𝑛c,&(𝑥) 𝑛f,&(𝑥)
𝐷

patch A patch B

𝑟c(𝑥) 𝑟f(𝑥)

trait, 𝑥



Example: Two-Patch Model
Total Abundance:

𝑑𝑁',)
𝑑𝑡

= 1 − 𝑥',) − 𝑥'∗
+
− 𝑉',) −)

,-.

𝒩

𝑁',, 𝑁',) + 𝐷 𝑁0,) − 𝑁',)

𝑑𝑁0,)
𝑑𝑡

= 1 − 𝑥0,) − 𝑥0∗
+
− 𝑉0,) −)

,-.

𝒩

𝑁0,, 𝑁0,) + 𝐷 𝑁',) − 𝑁0,)

Trait Mean:
𝑑𝑥',)
𝑑𝑡

= −2𝑉',) 𝑥',) − 𝑥'∗ + 𝐷
𝑁0,)
𝑁',)

𝑥0,) − 𝑥',)
𝑑𝑥0,)
𝑑𝑡

= −2𝑉0,) 𝑥0,) − 𝑥0∗ + 𝐷
𝑁',)
𝑁0,)

𝑥',) − 𝑥0,)

Trait Variance:
𝑑𝑉',)
𝑑𝑡
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Example: Two-Patch Model
(𝒩 = 1,𝐷 = 0.1,𝑀 = 0)
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Example: Two-Patch Model
(𝒩 = 2,𝐷 = 0.1,𝑀 = 0)
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Example: Two-Patch Model
(𝒩 = 2,𝐷 = 0.1,𝑀 = 0)

𝑛c,!(𝑥) 𝑛f,!(𝑥)

trait, 𝑥 trait, 𝑥

patch A patch B
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IV. Conclusions

• MulA-species moment equaAons provide an efficient and intuiAve 
way to model eco-evoluAonary dynamics, including the causes and 
consequences of intraspecific trait variaAon

• Invasion criteria can be calculated by evolving the trait mean and 
variance of a rare invader, along with branching point condiAons

• Intraspecific trait variaAon decreases species richness
• SpaAal models can result in local adaptaAon and species sorAng in 

heterogeneous environments
• See also: Lion S, Boots M, Sasaki A. 2022. MulAmorph eco-

evoluAonary dynamics in structured populaAons. American 
Naturalist 200: 345–372

(Wickman, Koffel & Klausmeier Am Nat 2023)



Overall Conclusions

• Diversity is an essential feature of complex systems such as 
ecological communities

• Trait-based eco-evolutionary modeling is a mature field that 
provides tools to understand the origin & maintenance of 
diversity

• Diversity is key to understanding ecological resilience
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Compe::ve communi:es

Rate of environmental change , 𝛿

Rate of environmental change , 𝛿
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