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Phytoplankton (and other microbes) as a 
model system for global change ecology





Theory + empirical studies (e.g., experiments) = 
powerful scientific approach in many disciplines

Theory Empirical studies



• Phytoplankton and other microbes are an excellent model 
system in ecology 
• Short generation times (double in a day or less)
• Large population numbers
• Easy to manipulate, replicate

Microbes as a model system



Phytoplankton perform 1/2 of global carbon fixation!

http://oceancolor.gsfc.nasa.gov/SeaWiFS/Gallery_Images/S19972442000244.L3m_CLI_CHLO.jpg



Functional and Biogeochemical Diversity



Complexity-related concepts

• Temperature dependence of growth
• Scaling from low level processes to high level patterns
• Nonlinear stressor interactions
• Importance of evolution
• Environmental change, community resilience and regime 

shifts (examples from plankton and human gut)
• The role of organismal traits in determining resilience



Predicted Temperature Change
Present-2100

!



Responses of Species and Communities to Global 
Change

• Change physiology 
•Disperse to more favorable locations
• Selection on genetic variation—evolutionary 

adaptation
• Species sorting (through competition): winners 

and losers
•Go extinct



Mechanistic Trait-based Framework

• The focus on ecological traits and trade-offs
• Can reduce complexity while incorporating diversity
• Can help uncover the mechanisms of community assembly
• Can explain and predict patterns of community organization



Typical Thermal Tolerance Curve and Relevant Traits

Topt

Niche 
width

Growth 
rate

Temperature

TmaxTmin

• Traits from >250 species
• From poles to tropics



How Do Phytoplankton Respond to Temperature 
at Present and in the Future?

Mridul Thomas Colin Kremer



Strong Latitudinal Gradient in Optimal Temperature 
(Microbial Trait Biogeography)

! Thomas et al. Science 2012



Adaptation to Ambient Temperature

Thomas et al. Science 2012

Topt



Predicted Range Shifts due to Warming

Trichodesmium erythraeumCalcidiscus leptoporus

Thomas et al. Science 2012



Potential Diversity Changes due to Range Shifts

!Thomas et al. Science 2012



How Will Nutrient Limitation Affect Temperature 
Sensitivity?



Temperature x Nutrient Interaction
Temperature curves under different N

Thomas et al. GCB 2017
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How would the predictions on range shifts change if we 
consider temperature x nutrient interaction?

No nutrient limitation Nutrient limitation
Trichodesmium

Thomas et al. GCB 2017



The most vulnerable regions = nutrient 
limitation and high temperature?

0

10

20

30
°C

0

10

20

30

µmol/kg

Temperature

Nitrate

High temperature & 
low nitrate

Extreme 10%
Extreme 20%

0

10

20

30
°C

0

10

20

30

µmol/kg

Temperature

Nitrate

High temperature & 
low nitrate

Extreme 10%
Extreme 20%

0

10

20

30
°C

0

10

20

30

µmol/kg

Temperature

Nitrate

High temperature & 
low nitrate

Extreme 10%
Extreme 20%

Litchman & Thomas Oikos 2022



Traits evolve!



Temperature

Can Phytoplankton Adapt to Rising Temperatures?

?



Patterns of adaptation 
Temperature Evolution Experiments

Topt change Niche width changeIncrease in growth rate

Possible evolutionary changes:
Danny O’Donnell Maria Aranguren



Temperature Evolution Experiments

Replicate lines
1.5 years at high 
temperature (31°C)

Model marine diatom Thalassiosira pseudonana

200-500 generations

Topt 24°C

Ancestral strain

Controls at 16 °C



Response to selection at high temperature (31°C) ca. 
350 generations

O’Donnell et al. GCB 2018



Evolutionary shift in optimum temperature Topt

O’Donnell et al. GCB 2018



Differences in C, N, P and Chl a

O’Donnell et al. L&O 2021 



Differences in C, N, P and Chl a

C, N, P and Chl a were higher in 31°C-
adapted lines

and
C:N and C:P were lower

O’Donnell et al. 2021 



Trade-offs in Adaptation to Different Temperatures

Model with costs and benefits can explain the 
observed trade-off:

𝑓(𝑇) = 𝑏!𝑒"!# 	−	𝑑!𝑒$!# − 𝑑%
T-dependent birth

T-dependent death

𝑑! =
𝑑!′
𝑝

𝑏! =
𝑏!′
𝑞

𝑞 = 𝑞" + 𝑞!𝑝

Cost of protection p 
(lower birth):

Benefit of protection p 
(lower death):



Trade-offs in Adaptation to Different Temperatures

Greater investment in 
protection and repair 
(p)=>higher nutrient (N) 
requirements=>cost at 
low temperatures



How Will Nutrient Limitation Affect Temperature 
Adaptation?



Effects of N Limitation on Evolutionary Adaptation to 
Temperature

 Evolution Experiments Under High and Low N
+ N -N

High 
Temperature

Adapt Do not adapt

Aranguren-Gassis et al. Eco Lett 2019 



Higher N requirements in high temperature 
tolerant strains

Control

Evolved 
tolerant

Aranguren-Gassis et al. Eco Lett 2019 



Higher N requirements of high temperature 
tolerant strains

Control

Evolved 
tolerant

Tolerant phenotype cannot be selected 
under N limitation—

NO EVOLUTIONARY RESCUE



Competition Between Two Phenotypes

Phenotype 1:
High T resistant
High N 
requirements

vs

Phenotype 2:
Non resistant
Lower N 
requirements

High N conditions Low N conditions



Resource limitation modifies responses to 
high temperature

• It may be universal: phytoplankton, corals, insects, fish, 
plants, etc.
• Resource limitation increases sensitivity to high 

temperatures (lowers Topt)
• Various resources (nutrients, water, food, etc.)
• Also: parasites

Litchman & Thomas 2022



Phytoplankton Potential for Climate Change Mitigation:
Ocean Nutrient Fertilization for CO2 Removal (CDR)

Enhancing Biological Carbon Pump
Max theoretical potential: 1 GT C/year



A unique situation: Fundamental research and 
practical implementation need to happen almost in 
parallel

• It is critical to identify most urgent questions and the effective ways 
to guide applications

• The problem of a shifting baseline—e.g., warming is changing 
community structure 

• OIF approaches need to be adjusted as conditions change  

 adaptive OF 

• Use ecological principles to maximize efficiency and avoid/minimize 
negative ecological consequences



Ecology Informs Adaptive Ocean Fertilization 
For CO2 removal Pulsed nutrient additions

Large diatoms

Efficient carbon sequestration!



Climate change and regime shifts



Lake Baikal, Siberia under Climate Change

Lake spans > 3° latitude 
• World’s oldest (25 MY), deepest lake (>1 mile 

deep), holds 20% of all unfrozen  freshwater 
in the world

• UNESCO World Heritage Site 



Lake Baikal, Siberia under Climate Change



Lake Baikal, Siberia under Climate Change



Plankton Food Web in Lake Baikal



Endemic diatoms bloom under 
ice



Temperature Responses
Endemic diatoms

Cannot grow above 10-12°C, Topt 4°C
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Lake Baikal Ice Cover Duration



Plankton Food Web in Lake Baikal



Temperature Responses
Cosmopolitan diatom (Synedra)

Growth rate

Temperature
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Temperature Responses
Cosmopolitan diatom

Growth rate

Temperature
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• Topt above 20°C
• Wide thermal niche (ca. 30°C)
• Present for most of the year



Lake Baikal food web model

Winter –blooming 
phyto

Summer –
blooming phyto

Nutrient

Grazer



Regime shifts with changing ice cover duration

Figure 1: A, Dynamic regimes and annual average biomass of winter phytoplankton (blue) and summer phytoplankton (green), dependent
on the fraction of the winter (ice cover) season, φ. In areas of 2-year cycles, the different averages of years 1 and 2 are shown. Significant
regime shifts are indicated with a flash. B, C, Community dynamics of PW (blue), PS (green), and the consumer C (red) in two consecutive
years on a linear (upper graph) and a logarithmic (lower graph) scale for selected periods of ice coverage (indicated by horizontal black lines).
B illustrates a large winter bloom in the first year and a delayed winter bloom in the second, and C illustrates a large winter bloom in the first
year and no winter bloom in the second. See figure S1 for more examples of the dynamics.
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Figure 1: A, Dynamic regimes and annual average biomass of winter phytoplankton (blue) and summer phytoplankton (green), dependent
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Community dynamics under different ice 
cover duration

Figure 1: A, Dynamic regimes and annual average biomass of winter phytoplankton (blue) and summer phytoplankton (green), dependent
on the fraction of the winter (ice cover) season, φ. In areas of 2-year cycles, the different averages of years 1 and 2 are shown. Significant
regime shifts are indicated with a flash. B, C, Community dynamics of PW (blue), PS (green), and the consumer C (red) in two consecutive
years on a linear (upper graph) and a logarithmic (lower graph) scale for selected periods of ice coverage (indicated by horizontal black lines).
B illustrates a large winter bloom in the first year and a delayed winter bloom in the second, and C illustrates a large winter bloom in the first
year and no winter bloom in the second. See figure S1 for more examples of the dynamics.



Necessary conditions for abrupt regime shifts

• nonlinear functional responses
• presence of predator-prey interactions



Trait distributions and ecosystem resilience

•Do some trait distributions result 
in communities and ecosystem 
functions more resilient to 
perturbations, including extreme 
events?



High amplitude fluctuations may lead to 
bimodal trait distributions



Trait distributions and ecosystem resilience

•When do extreme events lead 
to extreme responses?

Extreme event: in the 10 or 90 
percentile of density 
distribution

Microcystis exhibited a trade-off between competitive ability
for light and toxicity (Kardinaal et al. 2007). Consequently,
with the progression of the Microcystis bloom and decreasing
light availability, less toxic strains with greater light competi-
tive ability replaced more toxic strains that were poor light
competitors, thus decreasing the bloom toxicity (Kardinaal
et al. 2007). The knowledge of the trait variation for multiple
strains/genotypes within a species may help assess the out-
comes of competitive interactions between different HAB gen-
era, as the outcome of competition between Microcystis and
Cylindrospermopsis depended on what strains were involved
(Xiao et al. 2017).

Intraspecific trait variation arises either due to trait differ-
ences across genotypes or due to physiological plasticity
(Violle et al. 2012). Many studies have documented plasticity
of many traits in marine and freshwater HAB taxa, such as
CO2 uptake, degree of coloniality, inducible defenses, toxicity,
nitrogen fixation, and so on (De Tezanos Pinto and Lit-
chman 2010; Wohlrab et al. 2017; Ji et al. 2020; Lürling 2021).
Different genotypes may have different degrees of phenotypic
plasticity, as in a toxic dinoflagellate A. ostenfeldii
(Brandenburg et al. 2021). Comparing the degree of pheno-
typic plasticity within (and across) genotypes to the trait vari-
ation across genotypes would help determine if the fitness
under future conditions would be influenced more by evolu-
tionary adaptation or by acclimation.

Information on the degree of intraspecific trait variation in
HAB taxa is crucial for explaining the ecological success of
major toxic bloom-forming species in marine and freshwater
environments. Studies on key HAB taxa, such as the marine
dinoflagellate Alexandrium spp., freshwater cyanobacterium
Microcystis spp., and others show considerable genotypic and
phenotypic diversity, which may be one of the reasons for
their global distribution and frequent blooms (Anderson
et al. 2012; Brandenburg et al. 2018; Dick et al. 2021). Inter-
estingly, the degree of intraspecific trait variation can differ
across populations from different geographic locations, such
as in the toxic marine dinoflagellate A. ostenfeldii isolated from
the Baltic Sea vs. the Netherlands (Brandenburg et al. 2018). It
is unknown whether the trait/phenotypic diversity is consid-
erably greater in HAB-producing vs. non-HAB taxa.

Predicting HABs using traits
Surprisingly, using trait-based approaches to predict the

dynamics of species and communities in the future is much
less developed compared to trait-based explanations of the
observed past and present community composition. Incorpo-
rating trait-based approaches into predictions should help
increase the reliability of predictions and extend their time
horizon.

Predictive models for HABs, as for many other ecological
phenomena, can be divided into statistical (data-driven) and

Fig. 5. Simplified examples of how including traits into the predictions of HABs may be useful. (a) Upper panel shows a statistical linear model where
the biomass of cyanobacteria increases with temperature (solid black line). In the absence of knowledge of the temperature traits (lower panel), for the
temperatures increasing further, the model would predict biomass increase (black dashed line on the upper panel). However, including the temperature
trait information may lead to a change in the relationship (red dashed line) and predict a decrease in biomass because of the decline in growth rate of
that cyanobacterium with increasing temperature. (b) The common focus on the individual HAB species (e.g., Sp. 1) may erroneously predict a decline in
biomass when temperature increases above the Topt for Sp. 1. However, depending on what species are present, the cyanobacterial biomass may still
increase with increasing temperature or decline. The temperature where the decline may happen will depend on the temperature traits of the HAB spe-
cies in the community.

Litchman Trait-based prediction of HABs

10

 23782242, 0, D
ow

nloaded from
 https://aslopubs.onlinelibrary.w

iley.com
/doi/10.1002/lol2.10294, W

iley O
nline Library on [08/12/2022]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Regime shifts in host-associated microbiota

Gut microbiota effects on:

• Host metabolism
• Immunity
• Chronic diseases
• Longevity
• Mental health

Main mechanism: through 
microbial metabolites
E.g., SCFA butyrate (diet, 
community composition)



Structure and function of gut microbiota

• > 1000 species (bacteria, archaea, fungi, protists, viruses)
• Common ecological interactions
• Competition
• Mutualism (cross feeding)
• Predation
• Parasitism

• Host-mediated



Structure and function of gut microbiota

• > 1000 species (bacteria, archaea, fungi, protists, viruses)
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• Host-mediated

Lotka-Volterra



Structure and function of gut microbiota

• > 1000 species (bacteria, archaea, fungi, protists, viruses)
• Common ecological interactions
• Competition
• Mutualism (cross feeding)
• Predation
• Parasitism

Lotka-Volterra

metabolites

C Resource-based 
interactions+ +



Continuum of modeling approaches

would induce switches between them? With this line of
inquiry in mind, we ask the following specific questions:
(1) Under what assumptions do alternative stable states
arise in the gut, such that ecological dynamics can drive
similar hosts to experience divergent infection outcomes?
(2) Under what circumstances do common perturbations
to the gut microbiota—such as pathogen ingestion, antibi-
otic treatment, fecal transplants, and probiotic supplements—
lead to shifts between healthy and pathogen-infected states?
(3)Howdo shifts in resource supply rates—such as changes
in oxygen availability or dietary fiber—affect the likelihood
of infection and/or recovery, and what implications does
this have for preventing and treating enteric infections?

Model

Our model is rooted in resource competition theory (Til-
man 1982; Smith 1993) and contemporary niche theory
(Chase and Leibold 2003), and it explicitly incorporates
the roles of resource supply and environmental feedbacks
in gut community assembly. Niche theory is based on the
idea that interactions between organisms are shaped by
how they both respond to and affect their biochemical en-

vironment (Chase and Leibold 2003). Our use of the term
“resource” includes both electron donors (e.g., dietaryfiber)
and respiratory electron acceptors (e.g., oxygen).Wemodel
the coupled dynamics of the gut community and its chem-
ical environment (i.e., local resource concentrations) using
ordinary differential equations, tracking changes through
time in the abundance of anaerobic mutualistsM and path-
ogens P and the concentrations of shared carbon substrate
C and pathogen-preferred electron acceptors O. To do so,
wemake three key simplifying assumptions, justified below.

Biological Justifications for Key Model Assumptions

Assumption 1: Pathogen Success Is Determined by Its Abil-
ity to Compete for Carbon with a Broad Group of Anaerobic
Mutualists. Although the carbon substrates that reach the
large intestine comprise various forms of indigestible fiber
(Sawicki et al. 2017), which are generally unusable by en-
teric pathogens, these diverse fibers are broken down by
anaerobic mutualists into monosaccharides (Wexler and
Goodman 2017), which are then usable by pathogens. Rapid
cell turnover owing to viral lysis of anaerobic mutualists,
as well as pathogen interception of intermediate metabolic
products (i.e., cheating; Allison et al. 2014, Welch et al.
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Figure 1: Continuumofmodeling approaches. Gut communitymodeling approaches range fromA, microbiologicalmodels that focus on specific
genes, regulatory networks, and biochemical reactions, to B, resource-competition-basedmodels that focus on population dynamics, environmen-
tal state variables, and their interactions using generalized ecological mechanisms instead of physiological mechanisms (our approach), to
C, Lotka-Volterra models of two-species competition where environmental parameters are implicit and do not affect competitive dynamics.
Model A is specific to Citrobacter rodentium (Rivera-Chávez et al. 2016, 2017), while models B and C are general to many enteric pathogens.
Consistent with model variables,M and P respectively represent the abundances of anaerobic mutualists and pathogens, C represents shared
carbon substrate, and O represents pathogen-preferred electron acceptors.
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Beneficial bacteria in a healthy gut
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Rivera-Chávez et al. 2016



Pathogen initiates its (disruptive) feedback

C
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E. coli
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Rivera-Chávez et al. 2016
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Reduced model:

C
Carbohydrates

E. coli

Oxygen

O

P
Clostridia

M
− −

− +

+ +

− +• Mutualist and pathogen compete for C
• Both controlled by O2
• Hence, C:O2 ratio is important

Thomas Koffel John Guittar

Guittar et al. Am Nat 2021



The model

Δ Mutualist

Δ Carbohydrate

Δ Oxygen

Δ Pathogen

Host butyrate and O2
consumption

O2 stress

Pathogen-triggered release of O2



Alternative stable states

Healthy

Gastroenteritis/
dysbiosis



Alternative stable states

Food
poisoning

Recovery

Gastroenteritis/
dysbiosis

Healthy

Infection

The outcome depends
on the amount of 
pathogen ingested
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Perturbations lead to shifts between alternative 
states
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Figure 2: Disturbances and immigrations underlie regime shifts. In a gut community with bistable dynamics, immigration events or disturbances
can qualitatively alter community assembly outcomes, moving the system to a different state (e.g., between healthy and gastroenteritis).A, A path-
ogen immigration event must be sufficiently large to lead to an infected state. B, Antibiotics decimate mutualist populations, increasing the prox-
imity to the boundary between basins of attraction and thus sensitivity to infection. C, Fecal microbiota transplants show promise in resolving
chronic infection by reducing pathogen abundance through a preprocedural colonic purgation and then increasing mutualist populations with
a large immigration from a stool of a healthy donor.D, Probiotics promote recovery and/or increase resistance to infection by increasingmutualist
population density through mass effects. Note that the bistable dynamics displayed here are only one of three possible dynamical outcomes that
depend on resource supply rates—in this case, the supply rates (C: 35; O: 1.375) are similar to those of point d in figure 3A.
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How does diet and other environmental 
changes affect gut health (alternative stable 

states)?



Microbial niches
Mutualist and pathogen have different ecological niches

Mutualist Pathogen



Competition along environmental gradients
Increase in O2 supply leads to dysbiosis



Competition along environmental gradients
Fiber effect depends on the initial state


