Complex systems from the largest to the
lowest scales of organization

Our future is urban! 30%

28

From only 751 million in
1950, the population of the ?
world's cities has

rocketed to 4.2 billion.

=}

¥ 8 &5 g2

3

=}

ies0 — 2018 2080 2080

The dawn of

World Urbanization Prospects: The 2018 Revision S quantum-
Access the report: bit.ly/wup2018 « #UNPopulation UNDESA The key to practical

quantum computing l

and high-efficiency

solar cells may liein

the messy greenworld BY PHILIP BALL

/o

DiegO SantiagO'Alarcon UNIVERSITY o

) . SOUTH FLORIDA
Department of Integrative Biology oo




Outline

» Disease Ecology and The Urban

 Avian Malaria and Related Parasites Life
Cycle

» Global Disease Ecology
* Down to the Quantum
» How we tight up the small to the big
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Haemosporidian parasites: life cycle
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GLOBAL SCALE DISEASE
ECOLOGY

Question: how do energy input, habitat
heterogeneity, and host breadth affect the
diversity of parasite assemblages?



Data for three parasite genera

Genus Plasmodium . Haemoproteus . Leucocytozoon



Predictions
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- Richness = taxonomic richness

- RPD = phylogenetic richness

- PSV = phylogenetic relatedness of parasite
assemblage
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Hernandes Coérdoba et al. unpublished



Predictors

Importance of Variables on Parasite Diversity
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Genus Plasmodium . Haemoproteus . Leucocytozoon

Diversity

Environmental heterogeneity

SR = taxonomic richness
RPD = phylogenetic richness
PSV = phylogenetic relatedness of

parasite assemblage
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QUANTUM BIOLOGY

Question: how can quantum tools help us to
understand why the genome works in a non-
random way?



The Challenge

Journal of Heredity 2009:100(5):637-647 © The American Genetic Association. 2009. All rights reserved.
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Climbing Mount Probable: Mutation as
a Cause of Nonrandomness in Evolution
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Arlin Stoltzfus®' and David M. McCandlish?

Mol. Biol. Evol. 34(9):2163-2172  doi:10.1093/molbev/msx180
Article

Mutation bias reflects natural selectionin
Arabidopsisthaliana

Nature | www.nature.com | 1

https://doi.org/101038/s41586-021-04269-6  J. Grey Monroe"2™, Thanvi Srikant', Pablo Carbonell-Bejerano’, Claude Becker''°,

Received: @ November 2020 Mariele Lensink? Moises Exposito-Alonso®*, Marie Klein'?, Julia Hildebrandt',
. Manuela Neumann', Daniel Kliebenstein?, Mao-Lun Weng?, Eric Imbert®, Jon Agren’,
Accepted: 17 November 2021 Matthew T. Rutter®, Charles B. Fenster® & Detlef Weigel'™

Why this is a challenge?
There is no theory explaining why this nonrandom mutations occur!



Genetic Assimilation via Non-genetic Inheritance (i.e., genes are
followers; interaction between genetic and non- genetlc factors)
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‘...when it comes to
understanding the origins of
novelty in
evoution...selection cannot
select for traits that do not yet
exist, accidents can only sort
among preexisting variation,
and contraints only limit
options, but by themselve do
not create new ones.”
(Moczek 2019).

We know the components of the machine and how they interact and what they do,
but do we really know why there are nonrandom mutations?



Quantum physics and mutations

A quantum-theoretical approach to the phenomenon of directed A quantum mechanical model of adaptive mutation
mutations in bacteria (hypothesis) BioSystems 50 (1999) 203-211

BioSystems 43 (1997) 83-95 Johnjoe McFadden **, Jim Al-Khalili ®
Vasily V. Ogryzko
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Quantum Superposition, but how does it work in evolution?
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Genotype Networks (sensu Wagner 2011)

The ADN is digital, THEN: How do we codify the digital DNA in evolutionary terms? — Genotype

Networks
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Genotype networks have been explored via classical random walks by Wagner et al. see:
https://www.ieu.uzh.ch/wagner/publications.html



Genotype Networks are N-dimensional
(sensu Wagner 2011)
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We have the mechanism and the foundation of evolutionary space
Now, how do we implement the superposition?: Random Walks vs. Quantum

Walks Quantum Walks (QW)

Clasical Random Walks (CRW)

Froggy jumps either forward or
backwards, depending on the outcome
of corresponding coin toss, heads or
tails respectively.

Let us suppose that Mr. Money has a
coin with probability p of getting heads
and probability q of getting tails.

If Froggy begins its journey in position
zero, what is the probability of finding
our dear frog at position k after n
steps?
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Binomial Distribution with 100 steps

TO CLARIFY!
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If we measured the system in order to find
where is Homer, we would find our friend
either in position 1 with probability 0.5 or in
position —1 with probability 0.5

Step 2. After the first coin toss, Homer
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Step 3. After the second coin toss, Homer

is in positions 2, 0 and -2 If we measured the system in order to find

o [ where is Homer, we would find our friend in
&) one of the following positions: 2 with probability
0.25, position —2 with probability 0.25 or
position 0 with probability 0.5
_ ’7! X _n-x
=— P49
(n—x)!x!
S(x) (a)
1
b-a
X
a b H—O [ U + T



We have the mechanism and the foundation of evolutionary space
Now, how do we implement the sup\tla\;pl?(smon?: Random Walks vs. Quantum
alks

Our model for closed systems:
We put together genotype networks + quantum walks
INTERFACE  Quantum aspects of evolution: a comtribution B s asargn
towards evolutionary explorations of
genotype networks via quantum walks

We improved our quantum walk

royalsodietypublishing.org/journal/rsif

A new definition of hitting time and an embedded Markov

Research n Diego Santiago-Alarcon', Horacio Tapia-McClung?, Sergio Lerma-Heméndez>  chain in continuous-time quantum walks
o aNd Salvador E Venegas-Andrag*

updates

Miguel A. Ruiz-Ortiz' - Ehyter M. Martin-Gonzalez' -
Diego Santiago-Alarcon? - Salvador E. Venegas-Andraca3

Our step approach:

1) Develop a theory and provide proof of concept in a closed system (Santiago-
Alarcon et al. 2020)

2) Implement theory to realistic scenarios in closed systems (Ruiz-Ortiz et al. 2023,
and in prep. — results below)

3) Develop predictive theory for open systems (almost there, first version within the
next month)

4) Develop lab and field experiments to test the theory (for a grant)

Question: What is more efficient at finding novel phenotypes between CRW vs. QW in a
closed system (i.e., no selection or no environmental influence)
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Genotype Networks of Transcription Factors in 3 Model Spp.

Question: What is more time efficient at exploring evolutionary space via mutations
between CRW vs. QW in more realistic closed systems (i.e., no selection or no

environmental influence)
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QW efficiency vs CRW: evolutionary neighborhood
coverage via mutation

Histogram of coverage rate in CTQW and CTRW simulations
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QW efficiency vs CRW: discovery of evolutionary
novelties via mutation

Boxplots of the mean hitting times to phenotypes at n mutational steps
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OUR INITIAL QUESTION:

We know the components of the machine and how they interact and what they do, but

do we really know why there are nonrandom mutations?

WHERE WE ARE:

A conceptual framework to investigate mutation patterns via QW

QW higher probability of finding a novel phenotype than CRW

QW efficiency increased in more complex networks

QW is faster starting at different mutational steps away from focal phenotype
QW covers a larger genotype space

Thus, QW better to investigate nonrandom mutations at the micro scale

Non-random adaptive mutations are a causal process in evolution with empirical
evidence, an effect 4 to 7 times larger than what is expected by the neutral theory of
evolution in experiments, and from 2 to 3 times larger in field situations (Stoltzfus &

McCandlish 2017)

Following Steps:

Investigate in open systems (almost there; 3rd step)
Conduct experimental and empirical field work (proposals in prep.; 4th step)



Conclusions and Following Steps: open
vs. closed Hamiltonians

where H is the matrix with entries defined as
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Connecting back to the macro...

.

Non anthropized area Ruralarea
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Urban periphery Centralurban area

Plant and fauna diversity

Water runoff and flood regulation

NOW IMAGINE:

Air pollution due to transportation

Activities of community gardening

Pollination?

Qutdoor recreation?

- How wonderful would be to have a predictive
theory of quantum evolution that can take us a
step further in evolution, for example by:

1) Identifying how many mutations away we
are from a faulty protein that increases our

risk of cancer

2) Predicting the effect of the environment
(e.g., urban) on the most likely course of
genetic modifications

i ]
I Environment —> Natural Selection

Cities are a drastic and
permanent selective
pressure

They are increasing in
number and size

We have plenty of
replicates around the
world

Population genetics just
summarizes what
happens in the genome

Genetic Assimilation via Non-genetic Inheritance (i.e., genes are
followers; interaction between genetic and non-genetic factors)
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Evolution

Adaptation Darwinian

-l
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T Price’s equation

flexibility to ac%omodate
non-genetic inheritance
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The Quantum Team

Salvador E. Venegas Andraca

M Kareavgeiarmoot rustsis
Quantum Walks for
Computer Scientists

Salvador Eliss Venegas-Andrics

Sergio Lerma Hernandez  yoracio Tapia McClung

Salvador Elias Venegas-Andraca

Quantum Inf Process
DO 10.1007/511128-012-0432-5

Héctor Miguel Mejia Diaz — PhD Student

Miguel A. Ruiz Ortiz — Honor’s Thesis Mathematics

THANK YOU FOR YOUR ATTENTION!






LANDSCAPE SCALE DISEASE
ECOLOGY

Question: how does habitat changes affect
parasite diversity and infection rate?



How Should the Urban Be Perceived?

Landscape components
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4. Bluespaces (water bodies)

Veracruz, Mexico

Santiago-Alarcon & MacGregor-Fors (in press)
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Landscape epidemiology: land use types
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Lineage richness (Sest)

Abundance (No. infected hosts)
&

Parasite Richness & Abundance Structure
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Parasitological parameters and seasonality

a) Haemoproteus b) Plasmodium
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