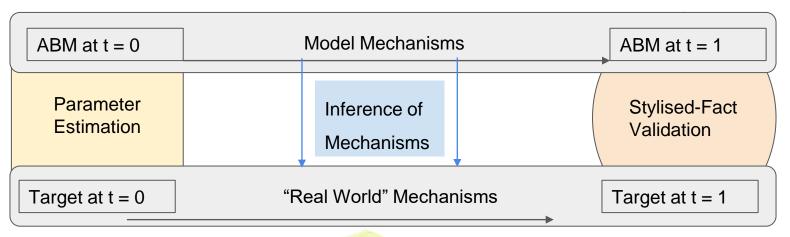
A Bee Model

Learning agent-based models from data

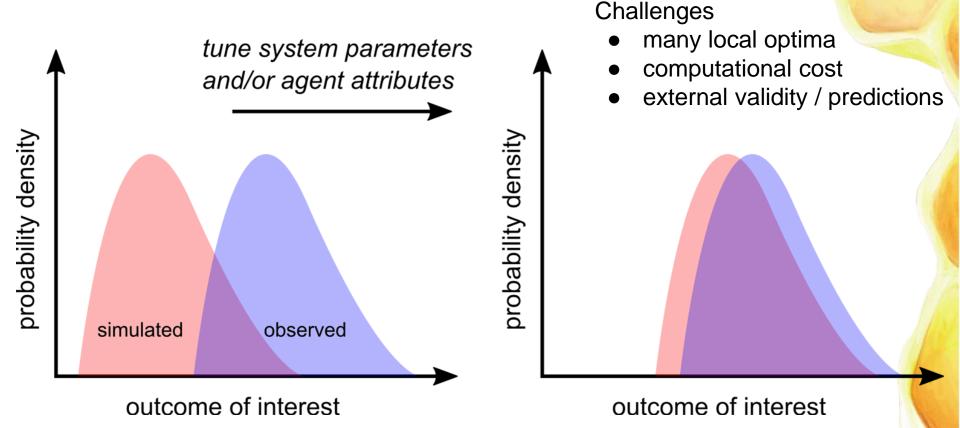
Agent based models

ABMs enable the study of a phenomenon via simulation of rule-based interaction of agents.

How to choose: i) Micro parameters ii) Mechanisms



Calibrating parameters to match moments of distributions



Overview of survey of IRL, shortcomings

\mathbf{Method}	\hat{R}_E params	Optimization objective	Notable aspect
Max margin me	thods - maximized	ze the margin between value of observed behavior and the hyp	pothesis
MMP		value of obs. τ - max of values from all other τ (Eq. 8)	provable convergence
MAX-MARGIN		feature exp. of policy - empirical feature exp. (Eq. 9)	sample bounds
MWAL	w	min diff. in value of policy and observed τ across features	first bound on
	a a		iteration complexity
HYBRID-IRL	Π	empirical stochastic policy - computed	natural gradients and
		policy of expert (Eq. 10)	efficient optimization
LEARCH	$R(\boldsymbol{\phi})$		nonlinear reward with
		value of obs. τ - max of values from all other τ (Eq. 8)	suboptimal input
Silver et al. [29]	1	value of obs. τ - max of values from all other τ (Eq. 8)	normalization of
			outlier inputs
Max entropy m	ethods - maxim	ze the entropy of the distribution over behaviors	
MAXENTIRL		entropy of distribution over trajectories (Eq. 11)	low learning bias
STRUCTURED	1	entropy of distribution over policies (Eq. 12)	efficient optimization
APPRENTICESHIP			
DEEP MAXENTIRL	l w		nonlinear reward
PI-IRL	1	gradient of likelihood equivalent of MaxEnt (Eq. 13)	continuous
			state-action spaces
REIRL	1	relative entropy of distribution	suboptimal input and
		from baseline policy (Eq. 14)	unknown dynamics
Bayesian learnii	ng methods - le	arn posterior over hypothesis space using Bayes rule	
BIRL		posterior with Boltzmann data likelihood (Eq. 16)	first Bayesian
	R(s)		IRL formulation
Lopes et al. [43]	1	entropy of multinomial $(p_1(s), p_2(s), \ldots, p_{ A -1}(s))$	active learning
Lopes et al. [45]		entropy of multinonnal $(p_1(3), p_2(3), \dots, p_{ A -1}(3))$	active learning
Lopes et al. [45]		derived from posterior	active learning
GP-IRL	$f(\boldsymbol{r}, \boldsymbol{\theta})$		nonlinear reward
	$f(r, \theta)$ w	derived from posterior	
GP-IRL MLIRL	w	derived from posterior Gaussian process posterior	nonlinear reward
GP-IRL MLIRL	w	derived from posterior Gaussian process posterior differentiable likelihood with Boltzmann policy (Eq. 16)	nonlinear reward
GP-IRL MLIRL Classification ar	w	derived from posterior Gaussian process posterior differentiable likelihood with Boltzmann policy (Eq. 16)	nonlinear reward first ML approach
GP-IRL MLIRL Classification ar	w nd regression -	derived from posterior Gaussian process posterior differentiable likelihood with Boltzmann policy (Eq. 16) learn a prediction model that imitates observed behavior	nonlinear reward first ML approach actions as state labels
GP-IRL MLIRL Classification ar SCIRL	w ad regression - w	derived from posterior Gaussian process posterior differentiable likelihood with Boltzmann policy (Eq. 16) learn a prediction model that imitates observed behavior Q-function as classifier scoring function	nonlinear reward first ML approach actions as state labels provable convergence
GP-IRL MLIRL Classification ar SCIRL CSI	w nd regression -	derived from posterior Gaussian process posterior differentiable likelihood with Boltzmann policy (Eq. 16) learn a prediction model that imitates observed behavior	nonlinear reward first ML approach actions as state labels provable convergence unknown dynamics avoids manual
GP-IRL MLIRL Classification ar SCIRL CSI	w ad regression - w regression	derived from posterior Gaussian process posterior differentiable likelihood with Boltzmann policy (Eq. 16) learn a prediction model that imitates observed behavior Q-function as classifier scoring function	nonlinear reward first ML approach actions as state labels provable convergence unknown dynamics

Overview of survey of IRL, shortcomings

- Accuracy of inference
- Generalisability
- Sensitivity to correctness of prior knowledge
- Disproportionate growth in solution complexity with problem size

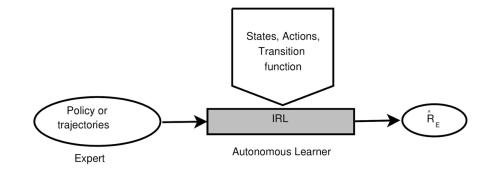


Figure 4: Pipeline for a classical IRL process. The learner receives an optimal policy or trajectories as input. The prior domain knowledge (shown here as a pentagon) include the completely observable state space, action space, and fully known transition probabilities.

A (classical) Bee Model

Basic Idea: Make as simple of a model as is useful to test data fitting strategies

The Environment: A grid with some amount of flowers randomly distributed

The Agent: A single bee that moves randomly around the ground. When it comes upon a flower, it has some probability of eating the flower and some probability of flying away

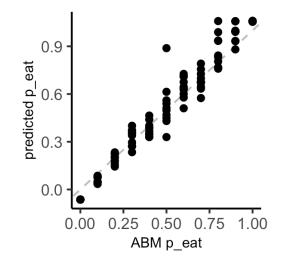
Observed: Location of flowers and bee in time

Target Parameter: Probability of eating a flower

A (classical) Bee Model

A (differentiable) Bee Model

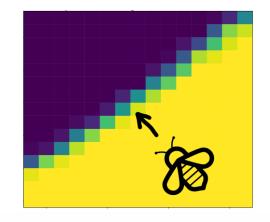
- Basic idea: use differentiable operations to build ABM (Monti et al. 2023)
- Novel: keep discrete agents, and spatial structure
- Formulate discrete decisions as sampling from probability distribution use VAE "reparameterization trick" (Kingma et al. 2013, Rezende et al. 2014)



Future directions for ABMs

- Exploration of phase transitions in parameter space
 - Computing directions as eigenvectors of Hessian (Naumann-Woleske et al. 2022)
 - Detection of different parameter regions

- Further ideas for learning initial values of latent variables (Monti et al. 2023)
 - Does the algorithm depend on the dynamic properties of the system? (Stationary distribution / cyclic attractor / chaos)
 - Flower growth as logistic map (latent variable)



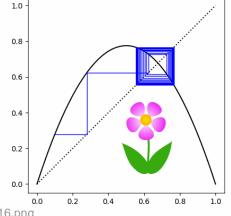
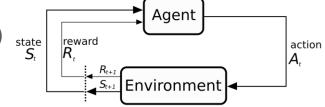


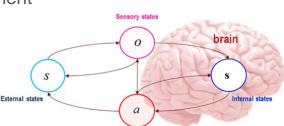
Image sources: Cobweb: https://www.johndcook.com/cobweb2z.png, Bee: https://cdn.onlinewebfonts.com/svg/img_563816.png Flower: https://clipart-library.com/newimages/clip-art-flowers-41.png

Future directions for ABMs [Pablo 1 min]

- Multi Agent Inverse Reinforcement Learning (MIRL)
 - Agents are generated to optimize pursue certain reward
 - They interact, exploring/exploiting strategic possibilities
 - Agents develop their own strategies along the way
 - Inverse: Learning agents' reward function from their strategies



- Active Inference and Free Energy Principle
 - Agents try to minimize "free energy" (uncertainty) in environment
 - They do so by refining their models and *acting* upon the environment
 - A modular ("markov-blanket") causal model naturally emerges
 - Inverse: Learning agents' internal states from s,o,a



τč

Future Directions for Project

- Join us on <u>GitHub</u> and <u>Zotero</u> to create a collective of teaching students and learning teachers.
- <u>Overview of ABM learning resources</u>, to be extended with examples from contemporary ABM modelling.

