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Theory of Computation

What is the mechanism underlying any given process?

- What is a mechanism? A definite procedure

- How to formalize a definite procedure? An abstract computational machine
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- What is the abstract computational machine underlying natural processes?
An epsilon-machine

Crutchfield, J. P. (1994). The calculi of emergence: computation, dynamics and induction. Physica D: Nonlinear Phenomena, 75(1-3), 11-54.



Computational Mechanics

Example: Fair Coin

Process An abstract machine
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Causal Equivalence Principle

P(815) =P(S|5:) = 5 ~§;



Causal Equivalence Principle

P(S15) = PS5 &= 5~ &
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Heads and Tails belong to the same causal state because
conditioning on them leads to the same probability
distributions over the future



Pr(s|H)

Causal Equivalence Principle

P(S15) = PS5 &= 5~ &

Prob. Dist. conditioned on Heads

1.0
0.8 1

0.6 1

Pr(H|H) Pr(T|H)

0.4 1

0.2 1

0.0

Events

Heads and Tails belong to the same causal state because

Prob. Dist. conditioned on Tails

Pr(H|T) Pr(T|T)

Events

conditioning on them leads to the same probability

distributions over the future

7
%
)

A 2
vz
/ \T' v
t « N, .H/’I/
/ /3 R / &

.

: P A
% T

0 - Hi\ b {5 ) \
e A P i A A




Pr(s|H)

Causal Equivalence Principle

P(S15) = PS5 &= 5~ &

Prob. Dist. conditioned on Heads

1.0
0.8 1

0.6 1

Pr(H|H) Pr(T|H)

0.4 1

0.2 1

0.0

Events

Heads and Tails belong to the same causal state because

Prob. Dist. conditioned on Tails

Pr(H|T) Pr(T|T)

Events

conditioning on them leads to the same probability

distributions over the future

7
%
)

A 2
vz
/ \T' v
t « N, .H/’I/
/ /3 R / &

.

: P A
% T

0 - Hi\ b {5 ) \
e A P i A A

> 0-50 | D 050 T




Current Abstract Machines: Unanswered Questions

=> What would happen if there are 2 or more variables in the given system?

-> Are causal states always determined by equivalence of conditional
probabilities?

Approach: Use ideas from time series based causal inference

Kathpalia, A., & Nagaraj, N. (2021). Measuring causality: The science of cause and effect. Resonance, 26, 191-210..



Coupled Coins

Past of Coin Y influences future of coin X :

These two coins are fair except one condition :
if Y(t) = H then X(t+1) =T
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Coupled Coin: X and Y dynamics as a single process

We can represent state of the system

e asavector,eqg;[H, T]
e construct a causal tree
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Coupled Coin: X and Y dynamics as a single process

We can represent state of the system

e asavector,eg;[H, T] _
e construct a causal tree [X’Y] "




Coupled Coin :
What if we only have data of X ?

e (Causal tree of X is more “complex” in the sense that
it has more causal states
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Coupled Coin:

What if we only have data of X ?

e Remember thatY influences X, so causal tree of Y is same as that of
single fair coin

Y : OW 0.50 | T



Coupled Coin: What we want?

Represent how causal states of Y and X influence each
other

X&Y:
(Hypothetical case)
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Applications: Question of interest

What are the minimal abstract machines underlying information
processing in natural systems?



Applications: Study of collective behavior

nonclustered (0)

Clustered (1)

nonscenting (0)

Model the mechanism behind the food exchange behavior in bees
2 time series describe the behavior as:

Scenting (1)
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X: clustering behavior

Y: scenting behavior



Redefine the Causal Equivalence Principle?

P(S15)=PE %) = 5~5

e Estimating higher order probability distributions from data - computationally
expensive and requires long time series
e Can we use dynamical complexity instead of conditional probabilities?

DC(S |8, = DO (S |5y)

e Foresee a relationship between DC and no. of causal states!

Kathpalia, A., & Nagaraj, N. (2019). Data-based intervention approach for Complexity-Causality measure. Peerd Computer Science, 5, e196.
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