So far: mostly about maps.

« discrete time systems:
* time proceeds in clicks
° G‘maps’7

» modeling tool: difference equation
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Next up: flows

* continuous time systems:
* time proceeds smoothly
° GEﬂOWS’9

* modeling tool: differential equations
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The basic representation in nonlinear
dynamics: the state space

X2

X7
e State variables x;

¢ Initial condition @

. X3
* Trajectory y
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The damped pendulum

* State variables?

 Initial condition?

* Trajectory?
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Fixed points of the simple pendulum

* Stable: perturbations shrink

 Unstable: perturbations grow
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Fixed points in the compound pendulum?
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Attractors
attractor
basin of
attraction
boundary of basin of
attraction
* Attractors exist only in dissipative systems!
* Dissipation (=) contraction of state space under the influence of
the dynamics
* Can still have chaos if no dissipation...just not chaotic attractors
50
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: Lorenz

The archetype of chao

a=16 r=45 b=d  (1,1,1)
s0 T T T T T T
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Deterministic Nonperiodic Flow*
EpwaArD N. LorENz
Massachusetts Institule of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)
ABSTRACT
Finite  systems of d inistic ordinary nonli dilfert.ntial i may be d&igned to represent
forced d d ic flow. Solutions of these can be i with in
phase spa.ce For those systems with bounded luti it is found that Todi di
unstable with respect to small modifications, so that slightly differing initial states can evolve mto consider-
ably different states. Syslems with bounded solutions are shown to possess bounded nummcal solutions.
A sirple system cellular ion is solved All of the ions are found
to be unstable, and almost all of them are nonperiodic.
The feasibility of very-long-range weather predi is ined in the light of these results.
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* Equations:

x'=ay-x)
y'=rx-y-xz

z'=xy- bz

~

LLLLLLLLE

(first three terms of a Fourier expansion of the Navier-Stokes eqns)
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AN ANA"
VAV AY

State variables:

X convective intensity
y temperature

z deviation from linearity in the
vertical convection profile

55
* Parameters:
= g Prandtl number - fluids property
=  Rayleigh number - related to AT m
=} aspect ratio of the fluid sheet
BN AYA"
VAV AV
56
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3716 r=dS b4 (1,1,1)

x'=16(y-x)
] y'=45x-y-xz

z'=xy-4z

57

© 2006 Jos Leys and Etienne Ghys; www.josleys.com
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3716 r=dS b4 (1,1,1)

;\'\
x'=16(y-x)
“ y'=45x-y-xz
* z'=xy-4z
/"”
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® x'=16(y-x)
. y'=50x-y-xz
z'=xy-4z
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3716 r=2S b=4  (1,1,1) vs (-1,-1,1)
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Recall: bifurcations
Qualitative changes in the dynamics—i.e.,
topological changes in the attractor—caused by
changes in parameters:
Ar
: & 9
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(NB: plain old movement of a fixed

point isn’t a bifurcation)
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Before we leave Lorenz...

Deterministic Nonperiodic Flow!

Epwarp N. Lorenz
Massachuselts Institale of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)

ApsTRACT

Finite systems of deterministic ordinary nonlinear differential equations may be dexigned 1o represent
forced dissipative hydrodynamic flow. Solutions of these equations can be identified with trajectories in
phase space. For those systems with bounded solutions, it is found that nonperiodic solutions are ordinarily
unstable with respect to small modifications, so that slightly differing initial states can evalve into consider-
ably different states, Systems with bounded solutions are shown to possess bounded numerical solutions.

A simple system representing cellular convection is salved numerically. All of the solutions are found
to be unstable, and almost all of them are nonperiodic.

The feasibility of very-long-range weather prediction is examined in the light of these results,

65

Attractors

Four types:

« fixed points
« limit cycles (aka periodic orbits)
e quasiperiodic orbits

« chaotic attractors
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Attractors

* Fixed point

67

Attractors

 Limit cycle Q

68
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Attractors

* Quasi-periodic orbit...

69

Chaotic (or “strange”) attractors:

¢, @

lcpt, -0 freq ratio = .5

State space

Real physical space
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Chaotic attractors

* often fractal

71

Fractals and chaos

The connection: many (most) chaotic systems have fractal
state-space structure.

But not “all.”
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Chaotic attractors

« covered densely by trajectories

73

Chaotic attractors

* SDOIC (exponential divergence
of nearby trajectories)
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Courtesy of Mike
Neuder
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Chaotic attractors

» SDOIC (exponential divergence
of nearby trajectories)
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Lyapunov exponents and chaos

« distance between forward images of two nearby points
grows as e#in the limit, as t 2 o
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Lyapunov exponents: some details

* negative A; compress state space; positive A; stretch it
* both can be going on at once, in different “directions"

* indeed, there are as many A, as there are state-space
dimensions

* but the “directions” along which they act aren’t vectors,
like they are in linear systems...

78

6/12/23

39



Image from CGTrader
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Lyapunov exponents: some details

* rather, the A, parametrize growth/shrinkage along the
unstable and stable manifolds #* and W*
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A; and the un/stable manifolds (W* and W*)

Wll
ws
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Lyapunov exponents: some details

* so you can think of A; as nonlinear analogs of eigenvalues s;
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A; and the un/stable manifolds (W" and W?)
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Lyapunov exponents: more details

* long-term average in definition; biggest one (A;) dominates
ast—> oo

* \; are about an attractor; they’re the same for all initial
conditions in one basin

* positive A, is a signature of chaos
* but if all the A; were positive, there wouldn’t be an attractor

* so there’s a balance of expansion (A>0) & compression
(A<0) going on in the state space of any dynamical system

* together with the geometry of the manifolds, this is what
creates the structure of the attractor.
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What that A/manifold structure
looks like for a periodic orbit:

Transverse
negative A
W

A “along”
the limit
cycle=0
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That negative transverse A makes the periodic
orbit stable in the face of perturbation:
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But there are also unstable periodic
orbits...

© 2006 Jos Leys and Etienne Ghys; www.josleys.com

There are an infinite number of these, of all periods, densely
embedded in any chaotic attractor

87
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Concepts: review

* Transient

* Fixed point (un/stable)
* Bifurcation

* Parameter

* Lyapunov exponent

« Stable & unstable manifolds

89
Attractors
Berng ) Beaufort
Four types: 2 Lapadr
PACIFIC % W
: OCEAN ;7
« fixed points ' s
Triple Divide Peak
* limit cycles (aka periodic orbits)
T . “Oomots y
* quasiperiodic orbits I amanmic
. guror \ OCEAN
* chaotic attractors = g :
A nonlinear system can have any number of attractors, of all types, sprinkled
around its state space
Their basins of attraction (plus the basin boundaries) partition the state space
And there’s no way, a priori, to know where they are, how many there are,
what types, etc. (which is not the case in linear systems!)
90
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Conditions for chaos

(in continuous-time systems)

Necessary:

* Nonlinear

* At least three state-space dimensions

Necessary and sufficient:

* Cannot be solved in closed form (“nonintegrable,” in Hamiltonian
parlance)
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