

Santa Fe Complex Systems Summer School

PREDICTION MARKETS

Rajiv Sethi

June 13, 2023

Overview

- What are prediction markets?
- Some current predictions for the 2024 Presidential Election
- Ecology of a complex system
- Coordination and manipulation
- Markets versus models
- Using markets to evaluate model performance

What is a Prediction Market?

- Mechanism for aggregating beliefs about likelihood of events
- Venue for the trading of securities with state contingent payoffs
- Sometimes called binary options or event futures
- Examples (real money, peer-to-peer): IEM, Intrade, PredictIt

What is a Prediction Market?

- Mechanism for aggregating beliefs about likelihood of events
- Venue for the trading of securities with state contingent payoffs
- Sometimes called binary options or event futures
- Examples (real money, peer-to-peer): IEM, Intrade, PredictIt
- Contracts are liquid: traders can enter, exit, reverse positions
- Contracts have an expiration date, resolution based on public information
- Margin requirement is worst-case loss (exchange bears no risk)
- Forecasting performance can be evaluated based on Brier scores or calibration curves
- Historical accuracy competitive with poll aggregates and models

Current Quotes on PredictIt

Who will win the 2024 Republican presidential nomination?

	Contract	Latest Yes Price	Best Offer	Best Offer
	Donald Trump	50¢ NC	51¢ Buy Yes Buy No	50¢
Q	Ron DeSantis	33¢ 1¢+	35¢ Buy Yes Buy No	67¢
	Tim Scott	9¢ 10*	9¢ Buy Yes Buy No	92¢
9	Glenn Youngkin	6¢ 20*	6¢ Buy Yes Buy No	95¢
	Nikki Haley	5¢ 10#	6¢ Buy Yes Buy No	95¢
	Mike Pence	4¢ NC	5¢ Buy Yes Buy No	96¢
	Kristi Noem	2¢ NC	2¢ Buy Yes Buy No	99¢
		10 More Contracts 🗸		

Who will win the 2024 Democratic presidential nomination?

Contract	Latest Yes Price	Best Offer	Best Offer
Joe Biden	74¢ NC	74¢ Buy Yes	Buy No 27¢
Gavin Newsom	15¢ ₁₀•	16¢ Buy Yes	Buy No 85¢
Kamala Harris	7¢ NC	8¢ Buy Yes	Buy No 93¢
Pete Buttigieg	4¢ NC	4¢ Buy Yes	Buy No 97¢
Hillary Clinton	З¢ ыс	4¢ Buy Yes	Buy No 97¢
JB Pritzker	2¢ NC	2¢ Buy Yes	Buy No 99¢
	6 More Contracts	/	

Who will win the 2024 US presidential election?

Contract	Latest Yes Price	Best Offer	Best Offer
Joe Biden	45¢ NC	46¢ Buy Yes Bu	^{ıy №} 55¢
Donald Trump	28¢ 1¢+	29¢ Buy Yes Bu	^{иу No} 72¢
Ron DeSantis	27¢ NC	27¢ Buy Yes Bu	_{иу No} 74¢
Gavin Newsom	5¢ NC	Б¢ Виу Yes Ви	иу No 95¢
Kamala Harris	4¢ NC	5¢ Buy Yes Bu	иу No 96¢
Pete Buttigieg	2¢ 1¢+	3¢ Buy Yes Bu	иу No 98¢

Predictlt 2024 GOP Nominee Contract:

- Each Contract pays \$1 if referenced candidate wins, \$0 otherwise
- If contract trades at \$0.09, buyer posts \$0.09, seller posts \$0.91
- Buyer faces large gain with low probability, seller faces small but likely gain
- Trade driven by differences in beliefs and risk attitudes

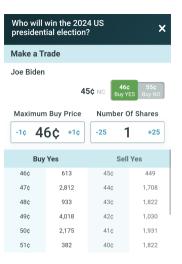
PredictIt 2024 GOP Nominee Contract:

- Each Contract pays \$1 if referenced candidate wins, \$0 otherwise
- If contract trades at \$0.09, buyer posts \$0.09, seller posts \$0.91
- Buyer faces large gain with low probability, seller faces small but likely gain
- Trade driven by differences in beliefs and risk attitudes
- If price rises to \$0.15, buyer can close for profit; seller can cover for loss

PredictIt 2024 GOP Nominee Contract:

- Each Contract pays \$1 if referenced candidate wins, \$0 otherwise
- If contract trades at \$0.09, buyer posts \$0.09, seller posts \$0.91
- Buyer faces large gain with low probability, seller faces small but likely gain
- Trade driven by differences in beliefs and risk attitudes
- If price rises to \$0.15, buyer can close for profit; seller can cover for loss

Trading based on continuous double auction:


- All orders are limit orders (specify price and quantity)
- Non-marketable orders enter order book
- Marketable orders trade against a resting order

Predictlt 2024 GOP Nominee Contract:

- Each Contract pays \$1 if referenced candidate wins, \$0 otherwise
- If contract trades at \$0.09, buyer posts \$0.09, seller posts \$0.91
- Buyer faces large gain with low probability, seller faces small but likely gain
- Trade driven by differences in beliefs and risk attitudes
- If price rises to \$0.15, buyer can close for profit; seller can cover for loss

Trading based on continuous double auction:

- All orders are limit orders (specify price and quantity)
- Non-marketable orders enter order book
- Marketable orders trade against a resting order

Submit Offer

	win the 202 tial election		×	Who will win the 2024 US presidential election?			
Make a T	rade			Make a T	rade		
Joe Biden				Joe Bider	ı		
	4				4	5¢ NC Buy Y	
Maximun	n Buy Price	Number 0	of Shares	Maximum Buy Price Number Of Shares			of Shares
-1¢ 4	6¢ +1¢	-25	+25	-1¢ 5	5¢ +1¢	-25	+25
Buy	Yes	Sell	Yes	Bu	y No	Sel	l No
46¢	613	45¢	449	55¢	449	54¢	613
47¢	2,812	44¢	1,708	56¢	1,708	53¢	2,812
48¢	933	43¢	1,822	57¢	1,822	52¢	933
49¢	4,018	42¢	1,030	58¢	1,030	51¢	4,018
50¢	2,175	41¢	1,931	59¢	1,931	50¢	2,175
51¢	382	40¢	1,822	60¢	1,822	49¢	382

Submit Offer

Market Ecology

- Prediction markets can serve as natural experiments to answer fundamental questions
- How does information get transmitted to prices?
- Price dynamics determined by ecology of trading strategies
- Need transaction level data to identify strategies

TRADING STRATEGIES AND MARKET MICROSTRUCTURE: EVIDENCE FROM A PREDICTION MARKET*

David M. Rothschild

Rajiv Sethi[‡]

TRADING STRATEGIES AND MARKET MICROSTRUCTURE: EVIDENCE FROM A PREDICTION MARKET*

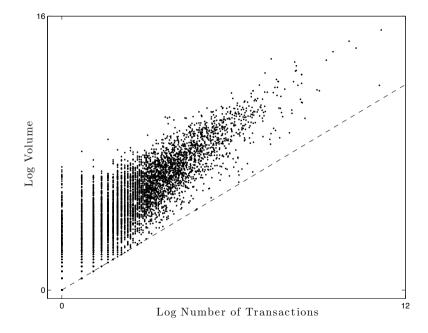
David M. Rothschild

Rajiv Sethi[‡]

For each trade over existence of market (11/16/2010 to 11/7/2012)

• Time, Market, Price, Quantity, Buyer, Seller, Aggressor side

Data allows us to compute, for each account:


• Volume, Transactions, Aggression, Duration, Direction, Margin, Profit

Volume, Transactions, and Accounts

- 22 markets: Obama, Romney, Santorum, Gingrich, Palin, etc.
- 12.9 million contracts traded in 287,000 distinct transactions
- 7.6 million contracts in the major party nominees
- 6,300 unique trader accounts

Volume, Transactions, and Accounts

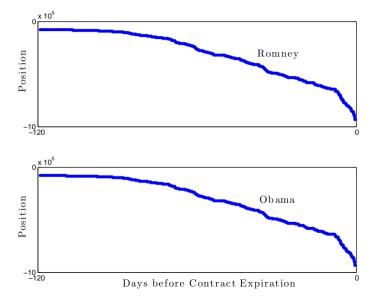
- 22 markets: Obama, Romney, Santorum, Gingrich, Palin, etc.
- 12.9 million contracts traded in 287,000 distinct transactions
- 7.6 million contracts in the major party nominees
- 6,300 unique trader accounts
- Average transaction size was 45, largest was 10,000
- Relatively small numbers of traders dominate volume and transactions
- $\bullet~55\%$ of traders had less than ten trades; 12% had just one
- $\bullet\,$ Largest trader accounts for 15% of volume, 12% of trades
- $\bullet\,$ One percent of traders account for 67% of volume
- \bullet One percent account for 60% of transactions

Classifying Strategies

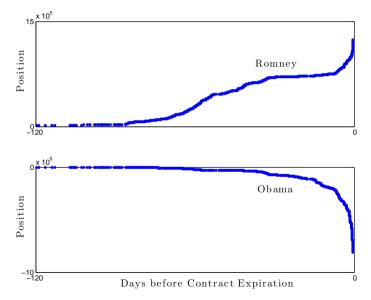
- Aggression: proportion of orders that are marketable
- Holding Period: Median time between entry and exit of a position
- Duration: holding period relative to median time to expiration
- Margin: maximum amount at risk
- Profit: Net gain across all trades

Characteristics of Selected Traders

	Volume	Trades	Aggression	Direction	Holding	Duration	Margin	Profit
A	3,961,242	69,977	0.77	0.19	0	0.00	\$9,877	\$61,871
В	2,062,908	22,738	0.27	-1.00	520,428	1.00	\$6,882,186	-\$6,882,186
С	1,380,406	29,134	0.31	-0.49	2,491	0.00	\$737	\$11,921
D	321,818	1,207	0.83	0.92	51,470	1.00	\$2,099,441	\$867,059
E	174,712	4,340	0.79	-0.13	7	0.00	\$415	\$1,058
F	156,413	65,652	0.72	0.38	0	0.00	\$1,375	\$2,147
G	138,264	1,707	0.39	1.00	1,802,885	1.00	\$535,018	\$318,975
H	72,563	392	0.73	1.00	149,180	1.00	\$479,896	\$233,414
1	68,416	858	0.37	-1.00	664,333	1.00	\$121,609	-\$121,609
J	44,195	350	0.64	-1.00	152,360	1.00	\$149,998	-\$149,998


Characteristics of Selected Traders

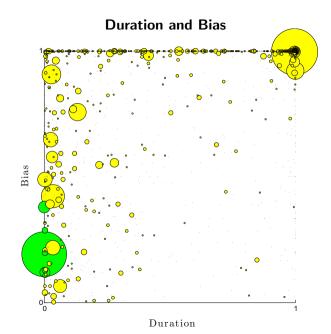
	Volume	Trades	Aggression	Direction	Holding	Duration	Margin	Profit
A	3,961,242	69,977	0.77	0.19	0	0.00	\$9,877	\$61,871
В	2,062,908	22,738	0.27	-1.00	520,428	1.00	<mark>\$6,882,186</mark>	<mark>-\$6,882,186</mark>
С	1,380,406	29,134	0.31	-0.49	2,491	0.00	\$737	\$11,921
D	321,818	1,207	0.83	0.92	51,470	1.00	\$2,099,441	\$867,059
E	174,712	4,340	0.79	-0.13	7	0.00	\$415	\$1,058
F	156,413	65,652	0.72	0.38	0	0.00	\$1,375	\$2,147
G	138,264	1,707	0.39	1.00	1,802,885	1.00	\$535,018	\$318,975
H	72,563	392	0.73	1.00	149,180	1.00	\$479,896	\$233,414
1	68,416	858	0.37	-1.00	664,333	1.00	\$121,609	-\$121,609
J	44,195	350	0.64	-1.00	152,360	1.00	\$149,998	-\$149,998


Characteristics of Selected Traders

	Volume	Trades	Aggression	Direction	Holding	Duration	Margin	Profit
A	3,961,242	69,977	0.77	0.19	0	0.00	<mark>\$9,877</mark>	<mark>\$61,871</mark>
В	2,062,908	22,738	0.27	-1.00	520,428	1.00	\$6,882,186	-\$ <mark>6,882,186</mark>
С	1,380,406	29,134	0.31	-0.49	2,491	0.00	\$737	\$11,921
D	321,818	1,207	0.83	0.92	51,470	1.00	\$2,0 <mark>99,441</mark>	\$867,059
Ε	174,712	4,340	0.79	-0.13	7	0.00	\$415	\$1,058
F	156,413	65,652	0.72	0.38	0	0.00	\$1,375	\$2,147
G	138,264	1,707	0.39	1.00	1,802,885	1.00	\$535,018	\$318,975
H	72,563	392	0.73	1.00	149,180	1.00	\$479,896	\$233,414
1	68,416	858	0.37	-1.00	664,333	1.00	\$121,609	-\$121,609
J	44,195	350	0.64	-1.00	152,360	1.00	\$149,998	-\$149,998

Trader A: Largest Volume and Most Transactions

Trader B: Largest Directional Exposure and Loss



Taxonomy of Trading Strategies

- Arbitrage: median holding period less than 10 minutes (A, E, and F)
- Unidirectional: bias equal to 1, non-arb (G, H, I, and J)
- Extreme Bias: bias above 0.9 but below 1, non-arb (B and D)
- High Bias: bias between 0.5 and 0.9, non-arb
- Moderate Bias: bias between 0.25 and 0.5, non-arb (C)
- Low Bias: bias less than 0.25, non-arb

A Taxonomy of Trading Strategies

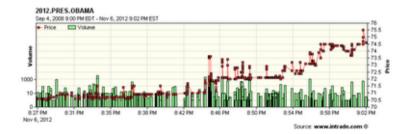
Strategy	Traders	%	Volume	%	Aggression	Duration	Bias
Unidirectional	5,118	87%	4,901,262	32%	0.65	0.75	1.00
Extreme Bias	136	2%	3,987,006	26%	0.38	0.65	0.97
High Bias	272	5%	1,699,355	11%	0.42	0.22	0.71
Moderate Bias	173	3%	1,293,289	9%	0.41	0.06	0.43
Low Bias	167	3%	926,702	6%	0.40	0.10	0.13
Arbitrage	40	1%	2,368,380	16%	0.73	0.00	0.20
Total	5,906	100%	15,175,994	100%			

Coordination and Manipulation

- Can market prices affect probability of referenced event?
- Can prices coordinate beliefs and result in self-fulfilling prophecies?
- Are there incentives for manipulation?

Coordination and Manipulation

- Can market prices affect probability of referenced event?
- Can prices coordinate beliefs and result in self-fulfilling prophecies?
- Are there incentives for manipulation?


The Prediction Market Paradox

- Incentives to manipulate forecasts believed to be unbiased
- But not forecasts believed to be manipulated
- Forecasting accuracy is self-limiting
- Is there evidence of attempted manipulation?

Election Day Romney Order Book (3:30 pm)

BI	D	A	SK
Qty	Price	Price	Qty
678	30.3	30.6	1
10	30.1	30.7	15
9999	30.0	30.8	119
8505	29.9	30.9	223
4890	29.2	31.0	839
6900	29.0	31.1	202
4999	28.5	31.2	800
10000	28.0	32.0	101
647	27.8	32.7	299
2318	27.5	32.8	300
598	27.1	32.9	1654
1338	27.0	33.0	50
1	26.9	33.3	456
1	26.1	33.4	71
100	26.0	33.7	98

Floor and Ceiling

Rajiv Sethi @rajivatbarnard

Romney order book on Intrade is amazing, someone with deep pockets trying to hold price above 30 @justinwolfers pic.twitter.com/EHvm1DGl

Reply	Delete	e Favo	orite	More
BI	D	A	SK	
Qty	Price	Price	Qty	
678	30.3	30.6	1	
10	30.1	30.7	15	
9999	30.0	30.8	119	
8505	29.9	30.9	223	
4890	29.2	31.0	839	
6900	29.0	31.1	202	
4999	28.5	31.2	800	
10000	28.0	32.0	101	
647	27.8	32.7	299	
2318	27.5	32.8	300	
598	27.1	32.9	1654	
1338	27.0	33.0	50	
1	26.9	33.3	456	
1	26.1	33.4	71	
100	26.0	33.7	98	

Justin Wolfers @justinwolfers

	-	_		_				
	r	0	"	0	w	п	19	9
_	_	_	_	_		_	_	

Wow RT @rajivatbarnard Romney order book on Intrade is amazing, someone with deep pockets trying to hold price above 30 pic.twitter.com/df2HIlia

Reply	oly Retweet		Favorite	More	
BI	D		ASK		
Qty	Price	Price	Qty		
678	30.3	30.6	1		
10	30.1	30.7	15		
9999	30.0	30.8	119		
8505	29.9	30.9	223		
4890	29.2	31.0	839		
6900	29.0	31.1	202		
4999	28.5	31.2	800		
10000	28.0	32.0	101		
647	27.8	32.7	299		
2318	27.5	32.8	300		
598	27.1	32.9	1654		
1338	27.0	33.0	50		
1	26.9	33.3	456		
1	26.1	33.4	71		
100	26.0	33.7	98		
65 RETWEETS	8 FAVOR	RITES		R 🚺 🖉 🖉	

Motives for Manipulation

- High visibility of Intrade prices
- Effects on fundraising, morale, turnout
- Costs of manipulation small relative to other campaign expenses

Motives for Manipulation

- High visibility of Intrade prices
- Effects on fundraising, morale, turnout
- Costs of manipulation small relative to other campaign expenses
- Manipulation can also be motivated by positions in other markets
- S&P futures and specific sectors sensitive to electoral outcomes

Motives for Manipulation

- High visibility of Intrade prices
- Effects on fundraising, morale, turnout
- Costs of manipulation small relative to other campaign expenses
- Manipulation can also be motivated by positions in other markets
- S&P futures and specific sectors sensitive to electoral outcomes

Was There Manipulation?

- Evidence suggestive but not decisive
- Consistent belief that market was undervaluing Romney?
- Financial motives possible but hard to identify
- Campaign related motives seem more plausible

Prediction Market Performance

- Wishful thinking and manipulation incentives should lower performance
- But prediction market accuracy has been consistently high
- What accounts for this? Shouldn't models produce better forecasts?
- How does market performance compare with model performance?

Models, Markets, and the Forecasting of Elections

RAJIV SETHI, Department of Economics, Barnard College, Columbia University and the Santa Fe Institute, USA JULIE SEAGER and EMILY CAI, Department of Economics, Barnard College, Columbia University, USA DANIEL M. BENJAMIN and FRED MORSTATTER, USC Information Sciences Institute, USA

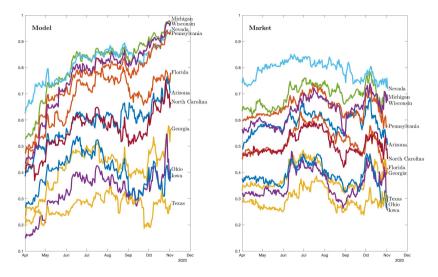
Overview

Two approaches to forecasting: models and markets

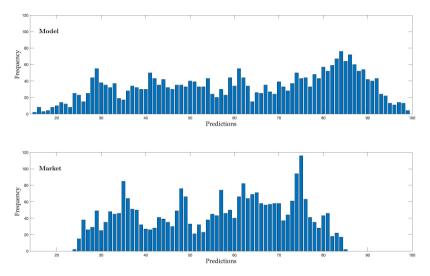
- Models (typically) backward-looking, limited set of variables, sluggish adjustment
- Markets forward-looking, use arbitrary information sources, rapid adjustment

Overview

Two approaches to forecasting: models and markets


- Models (typically) backward-looking, limited set of variables, sluggish adjustment
- Markets forward-looking, use arbitrary information sources, rapid adjustment

This paper


- Examine daily forecasts from Economist model and Predictlt exchage
- Data for 13 battleground states over 216 consecutive days leading to election
- Comparative performance evaluation, value of integration, method of hybridization
- Models can incorporate prices, markets can incorporate model-based beliefs
- Trading bot updates beliefs and portfolios daily, given endowment and risk preferences
- Bot profitability can be used for comparative model evaluation
- Check for robustness by computing profitability under different election outcomes

Data

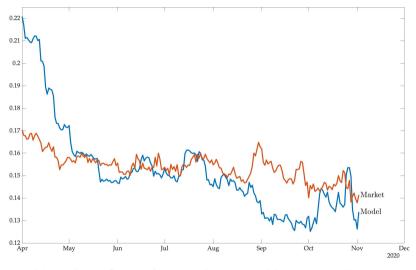
- Daily closing prices and daily model forecasts for thirteen battleground states
- Arizona, Florida, Georgia, Iowa, Michigan, Minnesota, Nevada, New Hampshire, North Carolina, Ohio, Pennsylvania, Texas, Wisconsin
- Significant disagreement between model and market in many states
- Model spans larger range of probabilities
- Model has greater movement across this range for individual states

Probabilities of a Democratic Victory in Selected States

Frequency Distributions for Model and Market Predictions

Performance

- Let p_{it} denote the probability assigned in period t to a Democratic victory in state i
- Brier score for period t, state i forecast


$$s_{it} = (p_{it} - r_i)^2$$

where $r_i = 1$ if state *i* resolved in favor of Democratic nominee, $r_i = 0$ otherwise

- We have T = 216 periods (consecutive days) and n = 13 states
- Averaging across states, obtain time series of average Brier score

$$\bar{s}_t = \frac{1}{n} \sum_{i=1}^n (p_{it} - r_i)^2$$

that is computed for models and markets separately

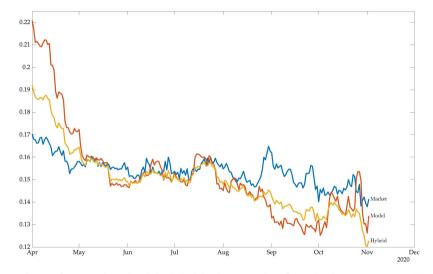
Mean Brier Scores for the Model and Market over Time

Overall Performance

Averaging across time as well as states, obtain a scalar measure of overall performance:

$$\bar{s} = \frac{1}{nT} \sum_{t=1}^{T} \sum_{i=1}^{n} (p_{it} - r_i)^2$$

where T = 216 and n = 13


Virtually identical average forecasting performance across mechanisms:

$$ar{s}^{model} = 0.1523$$

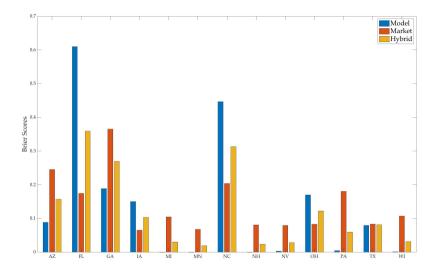
 $ar{s}^{market} = 0.1539$

However, this conceals significant differences in performance over time

Averaging Forecasts

- For each state-date pair, compute simple average probability of Democratic victory
- For any given state-date pair, average cannot get better score than both components
- But this is no longer true when we average across states and/or dates
- On 87 (of 216) days average performs better than both model and market
- Includes the 26 days leading up to the election

Mean Brier Scores for the Model, Market, and a Simple Average over Time


Averaging Forecasts

• Across all periods and states, average Brier score is

 $\bar{s}^{hybrid} = 0.1499$

so simple average of the two component forecasts beats both market and model

- Model and market made errors in different ways and for different states
- Model confidently wrong in FL/NC, market too uncertain in MN/NH
- Average avoids the most egregious errors
- Scores for last day: 0.1414 for market, 0.1339 for model, and 0.1228 for average

Brier Scores for Market, Model, and Hybrid Forecasts on November 2

Hybrid Prediction Market

- Algorithmic trading common in financial markets, low latency can be highly rewarding
- Insert into market a trading bot that acts as if it believes the model forecast
- Bot endowed with a budget and preferences that exhibit risk aversion
- Bot posts orders based on model-based beliefs, preferences, and current portfolio
- Orders trade immediately or enter order book, providing liquidity to market
- Cash and asset holdings of bot evolve over time, affecting the prices and sizes of orders
- Parameters can be tuned in experimental settings to examine effects on accuracy

Notation

Model

- Model generates distribution over outcomes in m jurisdictions, n candidates in each
- **S** denotes outcome realization, $s_{ij} = 1$ indicates candidate *i* wins jurisdiction *j*
- Ω is set of possible outcomes, ${\it p}:\Omega \rightarrow [0,1]$ is model forecast
- $\bullet\,$ With two candidates and thirteen states $|\Omega|=2^{13}=8192$

Notation

Model

- Model generates distribution over outcomes in m jurisdictions, n candidates in each
- **S** denotes outcome realization, $s_{ij} = 1$ indicates candidate *i* wins jurisdiction *j*
- Ω is set of possible outcomes, ${\it p}:\Omega \rightarrow [0,1]$ is model forecast
- $\bullet\,$ With two candidates and thirteen states $|\Omega|=2^{13}=8192$

Market

- For each jurisdiction, prediction market lists n contracts, one for each candidate
- Each contract has a unique price at which it can be bought/sold (ignore bid-ask spread)
- **Q** denotes prices, $q_{ij} \in [0, 1]$ is price of contract that pays if i wins in j

Trading

- Bot portfolio is (y, Z), where y is cash and Z is $n \times m$ matrix of contract holdings
- If outcome is $s \in \Omega$, terminal wealth resulting from portfolio (y, \mathbf{Z}) is

$$w = y + \sum_{j \in M} \mathbf{s}'_j \mathbf{z}_j$$

where $M = \{1, ..., m\}$ is the set of jurisdictions

Trading

- Bot portfolio is (y, \mathbf{Z}) , where y is cash and \mathbf{Z} is $n \times m$ matrix of contract holdings
- If outcome is $s \in \Omega$, terminal wealth resulting from portfolio (y, Z) is

$$w = y + \sum_{j \in M} \mathbf{s}'_j \mathbf{z}_j$$

where $M = \{1, ..., m\}$ is the set of jurisdictions

• Risk-averse trader will maximize expected utility, given by

$$E(u) = \sum_{S \in \Omega} p(S) u \left(y + \sum_{j \in M} \mathbf{s}'_j \mathbf{z}_j \right)$$

where $u:_+ \rightarrow$ is strictly increasing and concave

Trading

- Bot portfolio is (y, \mathbf{Z}) , where y is cash and \mathbf{Z} is $n \times m$ matrix of contract holdings
- If outcome is $s \in \Omega$, terminal wealth resulting from portfolio (y, Z) is

$$w = y + \sum_{j \in M} \mathbf{s}'_j \mathbf{z}_j$$

where $M = \{1, ..., m\}$ is the set of jurisdictions

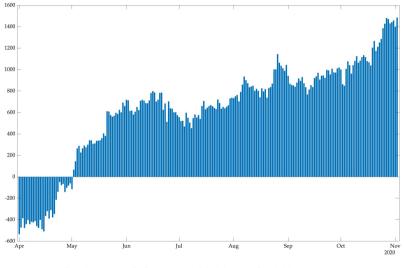
• Risk-averse trader will maximize expected utility, given by

$$E(u) = \sum_{S \in \Omega} p(S)u\left(y + \sum_{j \in M} \mathbf{s}'_j \mathbf{z}_j\right)$$

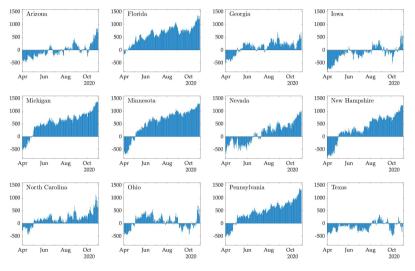
where $u:_+ \rightarrow$ is strictly increasing and concave

• Given starting portfolio, beliefs, preferences, and prices, trades X chosen to maximize

$$E(u) = \sum_{S \in \Omega} p(S) u \left(y + \sum_{j \in M} \left(\mathbf{s}'_j(\mathbf{z}_j + \mathbf{x}_j) - \mathbf{q}'_j \mathbf{x}_j \right) \right)$$


Implementation

- Consider two candidates, one market
- Preferences exhibit constant relative risk aversion (CRRA):


$$u(w) = egin{cases} rac{1}{1-
ho}w^{1-
ho}, & ext{if }
ho \geq 0, \
ho
eq 1 \ \log(w), & ext{if }
ho = 1 \end{cases}$$

where ho=0 is risk-neutrality, higher ho involves greater risk aversion

- Initial portfolio (y, z) = (1000, 0)
- How would portfolios have evolved in the case of Wisconsin?

Evolution of Contract Holdings for Wisconsin

Bot Contract Holdings for 12 battleground States

State	Cash	Contracts	Value	Payoff	Profit	Return
Arizona	\$566.45	748.55	\$944.35	\$1,314.99	\$314.99	31%
Florida	\$339.96	1351.73	\$904.28	\$339.96	-\$660.04	-66%
Georgia	\$743.54	735.23	\$1,034.72	\$1,478.76	\$478.76	48%
lowa	\$855.20	722.99	\$1,039.50	\$855.20	-\$144.80	-14%
Michigan	\$68.29	1383.63	\$1,004.27	\$1,451.92	\$451.92	45%
Minnesota	\$54.98	1305.55	\$1,021.09	\$1,360.53	\$360.53	36%
Nevada	\$190.84	1094.15	\$976.93	\$1,284.99	\$284.99	28%
New Hampshire	\$72.74	1274.46	\$984.85	\$1,347.20	\$347.20	35%
North Carolina	\$607.15	880.03	\$1,004.03	\$607.15	-\$392.85	-39%
Ohio	\$904.82	669.22	\$1,096.97	\$904.82	-\$95.18	-10%
Pennsylvania	\$138.91	1359.79	\$921.43	\$1,498.70	\$498.70	50%
Texas	\$1,027.13	-36.95	\$1,016.47	\$1,027.13	\$27.13	3%
Wisconsin	\$89.92	1484.09	\$1,088.83	\$1,574.01	\$574.01	57%
Total			\$13,037.72	<mark>\$15,045.36</mark>	\$2,045.36	<mark>16%</mark>

Terminal portfolios, payoffs, and profits in battleground states.

Robustness

- How would model have performed if one or more close states had been decided differently?
- Closest states: GA (0.24 percent), AZ (0.31 percent) and WI (0.62 percent)
- What if one or more of these had been decided differently?

Flipped State(s)	Payoff	Profit	Rate
Georgia	\$14,310.14	\$1,310.14	10.08%
Arizona	\$14,296.82	\$1,296.82	9.98%
Wisconsin	\$13,561.27	\$561.27	4.32%
Georgia, Arizona	\$13,561.60	\$561.60	4.32%
Georgia, Wisconsin	\$12,826.05	-\$173.95	-1.34%
Arizona, Wisconsin	\$12,812.73	-\$187.27	-1.44%
Georgia, Arizona, Wisconsin	\$12,077.51	-\$922.49	-7.10%

Hypothetical payoffs and profits if the closest states had been decided differently.

Conclusions

- Overall performance differences negligible, but interesting patterns in time series
- Market does better early, worse late
- Possible distortions due to massive inflow of funds, increase in volume
- Simple average beats both components overall and at the end of the period
- Suggest value of hybridization; we propose a hybrid prediction market
- Based on virtual trader with tunable budget and preferences; model-based beliefs
- Profitability test can be used for comparative evaluation of model performance

References

- Willemien Kets, David Pennock, Rajiv Sethi, and Nisarg Shah. "Betting strategies, market selection, and the wisdom of crowds." *Proceedings of the AAAI Conference on Artificial Intelligence*, 2014
- David Rothschild and Rajiv Sethi, "Trading strategies and market microstructure: Evidence from a prediction market." *Journal of Prediction Markets*, 2016
- Rajiv Sethi and Jennifer Wortman Vaughan. "Belief aggregation with automated market makers." *Computational Economics*, 2016
- Rajiv Sethi, Sethi, Rajiv, Julie Seager, Emily Cai, Daniel M. Benjamin, and Fred Morstatter, "Models, Markets, and the Forecasting of Elections" Available at SSRN: https://ssrn.com/abstract=3767544, 2021